A geometric description of Hazama's exceptional classes
Galluzzi, Federica
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 727-737 / Harvested from Biblioteca Digitale Italiana di Matematica

Sia X una varietà abeliana complessa di tipo Mumford. In queste note daremo una descrizione esplicita delle classi eccezionali in B2X×X trovate da Hazama in [Ha] e le descriveremo geometricamente usando la grassmaniana delle rette di P7.

Publié le : 2000-10-01
@article{BUMI_2000_8_3B_3_727_0,
     author = {Federica Galluzzi},
     title = {A geometric description of Hazama's exceptional classes},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {727-737},
     zbl = {1004.14002},
     mrnumber = {1801607},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_727_0}
}
Galluzzi, Federica. A geometric description of Hazama's exceptional classes. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 727-737. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_727_0/

[DMOS] Deligne, P.-Milne, J. S.-Ogus, A.-Shih, K., Hodge Cycles, Motives and Shimura Varieties, LNM900, Springer-Verlag (1982). | MR 654325

[F-H] Fulton, W.-Harris, J., Representation Theory, GTM129, Springer-Verlag (1991). | MR 1153249

[Haz] Hazama, F., Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 487-520. | MR 776690

[Ga] Galluzzi, F., Hodge structure of an abelian fourfold of Mumford-type, preprint.

[G] Gordon, B. B., A survey of the Hodge conjecture for Abelian Varieties, Duke preprint alg-geom 9709030, to appear in the second edition of «A survey of the Hodge conjecture» by James D. Lewis.

[Mu1] Mumford, D., Families of abelian varieties, in Algebraic Groups and Discontinuous Subgroup, Proc. Sympos.Pure Math., 9, Amer. Math. Soc., Providence, R.I. (1966), 347-351. | MR 206003

[Mu2] Mumford, D., A note of Shimura's Paper «Discontinuous Groups and Abelian Varieties», Math. Ann., 181, (1969), 345-351. | MR 248146

[vG] Van Geemen, B., An introduction to the Hodge Conjecture for abelian varieties, Algebraic cycles and Hodge Theory, Torino 1993Lect. Notes in Math.1594, Springer, Berlin, etc., (1994), 233-252. | MR 1335243