Sia una varietà abeliana complessa di tipo Mumford. In queste note daremo una descrizione esplicita delle classi eccezionali in trovate da Hazama in [Ha] e le descriveremo geometricamente usando la grassmaniana delle rette di .
@article{BUMI_2000_8_3B_3_727_0,
author = {Federica Galluzzi},
title = {A geometric description of Hazama's exceptional classes},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {3-A},
year = {2000},
pages = {727-737},
zbl = {1004.14002},
mrnumber = {1801607},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_727_0}
}
Galluzzi, Federica. A geometric description of Hazama's exceptional classes. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 727-737. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_727_0/
[DMOS] ---, Hodge Cycles, Motives and Shimura Varieties, LNM900, Springer-Verlag (1982). | MR 654325
[F-H] -, Representation Theory, GTM129, Springer-Verlag (1991). | MR 1153249
[Haz] , Algebraic cycles on certain abelian varieties and powers of special surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 487-520. | MR 776690
[Ga] , Hodge structure of an abelian fourfold of Mumford-type, preprint.
[G] , A survey of the Hodge conjecture for Abelian Varieties, Duke preprint alg-geom 9709030, to appear in the second edition of «A survey of the Hodge conjecture» by James D. Lewis.
[Mu1] , Families of abelian varieties, in Algebraic Groups and Discontinuous Subgroup, Proc. Sympos.Pure Math., 9, Amer. Math. Soc., Providence, R.I. (1966), 347-351. | MR 206003
[Mu2] , A note of Shimura's Paper «Discontinuous Groups and Abelian Varieties», Math. Ann., 181, (1969), 345-351. | MR 248146
[vG] , An introduction to the Hodge Conjecture for abelian varieties, Algebraic cycles and Hodge Theory, Torino 1993Lect. Notes in Math.1594, Springer, Berlin, etc., (1994), 233-252. | MR 1335243