This survey paper provides a brief introduction to the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After reviewing some basic concepts, we describe the fundamental theorem of Glimm on the global existence of BV solutions. We then outline the more recent results on uniqueness and stability of entropy weak solutions. Finally, some major open problems and research directions are discussed in the last section.
@article{BUMI_2000_8_3B_3_635_0, author = {Alberto Bressan}, title = {Sistemi iperbolici di leggi di conservazione}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3-A}, year = {2000}, pages = {635-656}, zbl = {0977.35087}, mrnumber = {1801614}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_635_0} }
Bressan, Alberto. Sistemi iperbolici di leggi di conservazione. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 635-656. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_635_0/
[1] On the front tracking algorithm, J. Math. Anal. Appl., 217 (1998), 395-404. | MR 1492096 | Zbl 0966.35078
- ,[2] BV estimates for a class of viscous hyperbolic systems, Indiana Univ. Math. J., in corso di stampa.
- ,[3] Contractive metrics for nonlinear hyperbolic systems, Indiana Univ. Math. J., 37 (1988), 409-421. | MR 963510 | Zbl 0632.35041
,[4] Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), 414-432. | MR 1188562 | Zbl 0779.35067
,[5] The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), 205-230. | MR 1337114 | Zbl 0835.35088
,[6] | MR 1816648 | Zbl 0997.35002
, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000.[7] The semigroup generated by conservation laws, Arch. Rational Mech. Anal., 133 (1995), 1-75. | MR 1367356 | Zbl 0849.35068
- ,[8] Well posedness of the Cauchy problem for systems of conservation laws, Amer. Math. Soc. Memoir, 694 (2000). | MR 1686652 | Zbl 0958.35001
- - ,[9] Oleinik type estimates and uniqueness for conservation laws, J. Differential Equations, 156 (1999), 26-49. | MR 1701818 | Zbl 0990.35095
- ,[10] Uniqueness of weak solutions to hyperbolic systems of conservation laws, Arch. Rational Mech. Anal., 140 (1997), 301-317. | MR 1489317 | Zbl 0903.35039
- ,[11] A uniqueness condition for hyperbolic systems of conservation laws, Discr. Cont. Dynam. Syst., in corso di stampa. | Zbl 1157.35421
- ,[12] stability estimates for conservation laws, Arch. Rational Mech. Anal., 149 (1999), 1-22. | MR 1723032 | Zbl 0938.35093
, - ,[13] The semigroup approach to first-order quasilinear equations in several space variables, Israel J. Math., 12 (1972), 108-132. | MR 316925 | Zbl 0246.35018
,[14] Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. | MR 303068 | Zbl 0233.35014
,[15] | Zbl 0940.35002
, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, 1999.[16] Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187-212. | MR 404872 | Zbl 0314.58010
,[17] Entropy and the uniqueness of solutions to hyperbolic conservation laws, in Nonlinear Evolution Equations ( Ed.), Academic Press, New York (1978), 1-16. | MR 513809 | Zbl 0469.35064
,[18] Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28 (1979), 137-188. | MR 523630 | Zbl 0409.35057
,[19] Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., 82 (1983), 27-70. | MR 684413 | Zbl 0519.35054
,[20] | MR 1158660 | Zbl 0804.28001
- , Measure Theory and Fine Properties of Functions, C.R.C. Press, 1992.[21] Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 697-715. | MR 194770 | Zbl 0141.28902
,[22] Generic behavior of one-dimensional blow-up patterns, Annali Scuola Norm. Sup. Pisa, Serie IV, 19 (1992), 381-450. | MR 1205406 | Zbl 0798.35081
- ,[23] Blowup for systems of conservation laws, SIAM J. Math. Anal., in corso di stampa. | MR 1752421 | Zbl 0969.35091
,[24] Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 27 (1974), 377-405. | MR 369934 | Zbl 0302.35064
,[25] First-order quasilinear equations with several space variables, Math. USSR Sb., 10 (1970), 217-273. | Zbl 0215.16203
,[26] Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566. | MR 93653 | Zbl 0081.08803
,[27] | MR 1077828 | Zbl 0723.65067
, Numerical Methods for Conservation Laws, Lecture Notes in Math., Birkhäuser, 1990.[28] Uniqueness of weak solutions of the Cauchy problem for general conservation laws, J. Differential Equations, 20 (1976), 369-388. | MR 393871 | Zbl 0288.76031
,[29] The deterministic version of the Glimm scheme, Comm. Math. Phys., 57 (1977), 135-148. | MR 470508 | Zbl 0376.35042
,[30] stability of conservation laws with coinciding Hugoniot and characteristic curves, Indiana Univ. Math. J., 48 (1999), 237-247. | MR 1722199 | Zbl 0935.35090
- ,[31] stability for systems of hyperbolic conservation laws, J. Amer. Math. Soc., 12 (1999), 729-774. | MR 1646841 | Zbl 0940.35136
- ,[32] | MR 748308 | Zbl 0537.76001
, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984.[33] Recent results on hyperbolic relaxation problems, in Analysis of Systems of Conservation Laws ( Ed.), Chapman & Hall/CRC, 1998, pp. 128-198. | Zbl 0940.35127
,[34] On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equations occurring in mechanics, Usp. Mat. Nauk., 12, (1957), 169-176. | MR 94543
,[35] BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one, Comm. Math. Phys., 106 (1986), 481-484. | MR 859822 | Zbl 0619.35073
,[36] A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc., 117 (1993), 1125-1139. | MR 1120511 | Zbl 0799.35153
,[37]
, Systémes de Lois de Conservation, Diderot Editeur, 1996.[38] | MR 688146 | Zbl 0508.35002
, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.[39] The spaces BV and quasilinear equations, Math. USSR Sbornik, 2 (1967), 225-267. | MR 216338 | Zbl 0168.07402
,