I. Introduzione. II. Un rapido esame di modelli e strumenti. III. Simulazioni Monte-Carlo efficienti e calcolo di Malliavin. IV. Osservazioni parziali e «option pricing».
@article{BUMI_2000_8_3B_3_553_0,
author = {P. L. Lions},
title = {On mathematical finance},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {3-A},
year = {2000},
pages = {553-572},
zbl = {0960.91040},
mrnumber = {1801617},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_3_553_0}
}
Lions, P. L. On mathematical finance. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 553-572. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_3_553_0/
[1] --, Pricing and hedging derivative securities inmarckets with uncertain volatilities, Appl. Math. Finance, 2 (1995), 73-88.
[2] --, preprint.
[3] -, Option pricing with transaction costs and a nonlinearBlack-Scholes equation, Finance and Stochastics, to appear. | Zbl 0915.35051
[4] -, The pricing of options and corporate liabilities, J. Political Economy, 81 (1973), 637-659. | Zbl 1092.91524
[5] --, Valuation of mortgage-backed securitiesusing Brownian bridges to reduce effective dimension, J. Comp. Finance, 1 (1997),27-46.
[6] , Security Markets: Stochastics Models, Academic Press, Boston, 1988. | MR 955269 | Zbl 0661.90001
[7] , Dynamic Asset Pricing Theory, 2nd edit., Princeton Univ. Press, Princeton, 1996. | Zbl 1140.91041
[8] ----, Applications of Malliavin calculus to Monte-Carlo methods in Finance, Finance and Stochastics, 3 (1999). | MR 1842285 | Zbl 0947.60066
[9] ---, Applications of Malliavincalculus to Monte-Carlo methods in Finance, II, Finance and Stochastics, toappear. | Zbl 0973.60061
[10] -, Introduction au calcul stochastique appliquè a la Finance, 1991. | Zbl 0497.60055
[11] -, work in preparation.
[12] -, Control stochastique avec informations partielles et applicationsa la Finance, C.R. Acad. Sci. Paris, 328 (1999), 1003-1010. | MR 1696196 | Zbl 0937.93058
[13] , Viscosity solutions of fully nonlinear second order equations and optimalstochastic control in infinite dimension, Part II: Optimal control of Zakai'sequation. In Stochastic Partial Differential Equations and Applications, II. SpringerL.N. Maths, 1340, Berlin, 1989. | MR 1019600 | Zbl 0757.93083
[14] -, work in preparation.
[15] , Stochastic Analysis, Springer, Berlin, 1997. | MR 1450093 | Zbl 0878.60001
[16] , Theory of rational option pricing, Bell J. Econom. Manag. Sci, 4 (1973), 141-183. | MR 496534
[17] -, Mastingale methods in Financial Modelling, Springer, Berlin, 1997. | MR 1474500 | Zbl 0906.60001
[18] , The Malliavin calculus and related topics, Springer, Berlin, 1995. | MR 1344217 | Zbl 0837.60050
[19] , Interest rate option models, Wiley, New-York, 1997. | Zbl 0992.91500