Si studiano i monoidi commutativi ridotti con due componenti archimedee e si forniscono dei teoremi di strutture. Si presta particolare attenzione a quei monoidi che sono finitamente generati, e si danno degli algoritmi che permettono di ottenere informazioni a partire da un delle loro presentazioni.
@article{BUMI_2000_8_3B_2_471_0, author = {J. C. Rosales and P.\textasciitilde A. Garc\'\i a-S\'anchez}, title = {Reduced commutative monoids with two Archimedean components}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3-A}, year = {2000}, pages = {471-484}, zbl = {0972.20035}, mrnumber = {1769997}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_2_471_0} }
Rosales, J. C.; García-Sánchez, P.~A. Reduced commutative monoids with two Archimedean components. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 471-484. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_2_471_0/
[1] 1961. | MR 132791 | Zbl 0111.03403
- , The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc., Providence,[2] 1984. | MR 741678 | Zbl 0566.20050
, Commutative semigroup rings, University of Chicago Press,[3] The free envelope of a finitely generated commutative semigroup, Trans. Amer. Math. Soc., 149 (1970), 665-682. | MR 292975 | Zbl 0211.33602
,[4] The -algebra of a commutative semigroup, Trans. Amer. Math. Soc., 83 (1956), 70-97. | MR 81908 | Zbl 0072.12701
- ,[5] | MR 188322 | Zbl 0133.27904
, The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965.[6] Function minimum associated to a congruence on integral -tuple space, Semigroup Forum, 51 (1995), 87-95. | MR 1337000 | Zbl 0831.20081
,[7] On normal affine semigroups, Linear Algebra Appl., 286 (1999), 175-186. | MR 1661222 | Zbl 0943.20062
- ,[8] | MR 1694173 | Zbl 0966.20028
- , Finitely generated commutative monoids, Nova Science Publ., 1999.[9] A deterministic algorithm to decide if a finitely presented abelian monoid is cancellative, Comm. Algebra, 24 (13) (1996), 4217-4224. | MR 1414579 | Zbl 0940.20058
- ,[10] Nonpotent Archimedean semigroups with cancellative law, I. J. Gakugei Tokushima Univ., 8 (1957), 5-11. | MR 96741 | Zbl 0079.25103
,