Reduced commutative monoids with two Archimedean components
Rosales, J. C. ; García-Sánchez, P.~A.
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 471-484 / Harvested from Biblioteca Digitale Italiana di Matematica

Si studiano i monoidi commutativi ridotti con due componenti archimedee e si forniscono dei teoremi di strutture. Si presta particolare attenzione a quei monoidi che sono finitamente generati, e si danno degli algoritmi che permettono di ottenere informazioni a partire da un delle loro presentazioni.

Publié le : 2000-06-01
@article{BUMI_2000_8_3B_2_471_0,
     author = {J. C. Rosales and P.\textasciitilde A. Garc\'\i a-S\'anchez},
     title = {Reduced commutative monoids with two Archimedean components},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {471-484},
     zbl = {0972.20035},
     mrnumber = {1769997},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_2_471_0}
}
Rosales, J. C.; García-Sánchez, P.~A. Reduced commutative monoids with two Archimedean components. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 471-484. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_2_471_0/

[1] Clifford, A. H.-Preston, G. B., The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc., Providence, 1961. | MR 132791 | Zbl 0111.03403

[2] Gilmer, R., Commutative semigroup rings, University of Chicago Press, 1984. | MR 741678 | Zbl 0566.20050

[3] Grillet, P. A., The free envelope of a finitely generated commutative semigroup, Trans. Amer. Math. Soc., 149 (1970), 665-682. | MR 292975 | Zbl 0211.33602

[4] Hewitt, E.-Zuckerman, H. S., The l1-algebra of a commutative semigroup, Trans. Amer. Math. Soc., 83 (1956), 70-97. | MR 81908 | Zbl 0072.12701

[5] Rédei, L., The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965. | MR 188322 | Zbl 0133.27904

[6] Rosales, J. C., Function minimum associated to a congruence on integral n-tuple space, Semigroup Forum, 51 (1995), 87-95. | MR 1337000 | Zbl 0831.20081

[7] Rosales, J. C.-García-Sánchez, P. A., On normal affine semigroups, Linear Algebra Appl., 286 (1999), 175-186. | MR 1661222 | Zbl 0943.20062

[8] Rosales, J. C.-García-Sánchez, P. A., Finitely generated commutative monoids, Nova Science Publ., 1999. | MR 1694173 | Zbl 0966.20028

[9] Rosales, J. C.-Urbano-Blanco, J. M., A deterministic algorithm to decide if a finitely presented abelian monoid is cancellative, Comm. Algebra, 24 (13) (1996), 4217-4224. | MR 1414579 | Zbl 0940.20058

[10] Tamura, T., Nonpotent Archimedean semigroups with cancellative law, I. J. Gakugei Tokushima Univ., 8 (1957), 5-11. | MR 96741 | Zbl 0079.25103