Scriviamo ed . Cerchiamo gruppi con generatori tali che ed per alcuni numeri naturali , .
@article{BUMI_2000_8_3B_2_461_0,
author = {H. Heineken},
title = {Groups generated by two mutually Engel periodic elements},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {3-A},
year = {2000},
pages = {461-470},
zbl = {0982.20016},
mrnumber = {1769996},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_2_461_0}
}
Heineken, H. Groups generated by two mutually Engel periodic elements. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 461-470. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_2_461_0/
[1] , Finite Varieties, manuscript, distributed about 1988.
[2] -, Generators and Relations for Discrete Groups, Berlin-Heidelberg-New York1980. | MR 609520 | Zbl 0422.20001
[3] , Endliche Gruppen I, Berlin-Heidelberg-New York1967. | MR 224703 | Zbl 0217.07201