On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order
Boni, Théodore K.
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 375-409 / Harvested from Biblioteca Digitale Italiana di Matematica

In questo lavoro sotto queste ipotesi si ottengono alcune condizioni di non esistenza e di esistenza delle soluzioni per alcuni sistemi parabolici semilineari del secondo ordine. Inoltre si studia il comportamento asintotico di alcune soluzioni.

Publié le : 2000-06-01
@article{BUMI_2000_8_3B_2_375_0,
     author = {Th\'eodore K. Boni},
     title = {On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {375-409},
     zbl = {0964.35070},
     mrnumber = {1769993},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_2_375_0}
}
Boni, Théodore K. On blow-up and asymptotic behavior of solutions for some semilinear parabolic systems of second order. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 375-409. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_2_375_0/

[1] Amann, H., Dynamic theory of quasilinear parabolic systems III global existence, Math. Z., 202, 2 (1989), 219-254. | MR 1013086 | Zbl 0702.35125

[2] Boni, T. K., Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre, C. R. Acad. Paris, t. 326, Série I (1998), 317-322. | MR 1648453 | Zbl 0913.35069

[3] Deng, K., Global existence and blow up for a system of heat equations with a nonlinear boundary conditions, Math. Meth. in the Appl. Sci., 18 (1995), 307-315. | MR 1320001 | Zbl 0822.35074

[4] Escobedo, M.-Herrero, M. A., A semilinear parabolic system in a bounded domain, Ann. Mat. pura applicata, (IV), Vol. CLXV (1993), 315-336. | MR 1271424 | Zbl 0806.35088

[5] Escobedo, M.-Levine, H. A., Critical blow up and global existence for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal., 129 (1995), 47-100. | MR 1328471 | Zbl 0822.35068

[6] Escher, J., Global existence and nonexistance for parabolic systems with nonlinear boundary conditions, Math. Ann., 284 (1989), 285-305. | MR 1000112 | Zbl 0652.35065

[7] Gang, L.-Sleeman, B. D., Non-existence of global solutions to systems of semi-linear parabolic equations, Jour. of Diff. Equat., 104 (1993), 147-168. | MR 1224124 | Zbl 0816.35060

[8] Holland, C. J., Limiting behavior of a class of nonlinear reaction diffusion equations, Quaterly of Applied Mathematics, 3, Vol. XL (1982), 293-296. | MR 678200 | Zbl 0506.35059

[9] Henry, D., Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer (1981). | MR 610244 | Zbl 0456.35001

[10] Levine, H. A. and Payne, L. E., Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, Jour. of Diff. Equat., 16 (1974), 319-334. | MR 470481 | Zbl 0285.35035

[11] Protter, M. H.-Weinberger, H. F., Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, NJ (1967). | MR 219861 | Zbl 0153.13602

[12] Rossi, J.-Wolanski, N., Blow-up vs. global existence for a semilinear reactiondiffusion system in a bounded domain, Commun. in PDE., 20 (11 and 12), (1995), 1991-2004. | MR 1361728 | Zbl 0851.35064

[13] Walter, W., Differential- und integral-ungleichungen, Springer, Berlin (1964). | MR 172076