Some results on invariant measures in hydrodynamics
Ferrario, B.
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 79-94 / Harvested from Biblioteca Digitale Italiana di Matematica

In questa nota, si presentano risultati di esistenza e di unicità di misure invarianti per l'equazione di Navier-Stokes che governa il moto di un fluido viscoso incomprimibile omogeneo in un dominio bidimensionale soggetto a una forzante che ha due componenti: una deterministica e una di tipo rumore bianco nella variabile temporale.

Publié le : 2000-02-01
@article{BUMI_2000_8_3B_1_79_0,
     author = {B. Ferrario},
     title = {Some results on invariant measures in hydrodynamics},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {79-94},
     zbl = {0974.76022},
     mrnumber = {1755702},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_1_79_0}
}
Ferrario, B. Some results on invariant measures in hydrodynamics. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 79-94. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_1_79_0/

[1] Albeverio, S.-Ribeiro De Faria, M.-Høegh-Krohn, R., Stationary measures for the periodic Euler flow in two dimensions, J. Stat. Phys., Vol. 20, No. 6 (1979), 585-595. | MR 537263

[2] Bensoussan, A.-Temam, R., Equations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222. | MR 348841 | Zbl 0265.60094

[3] Chambers, D. H.-Adrian, R. J.-Moin, P.-Steward, D. S.-Sung, H. J., Karhunen-Loéve expansion of Burgers' model of turbulence, Phys. Fluids31/9 (1988), 2573-2582.

[4] Da Prato, G.-Debussche, A.-Temam, R., Stochastic Burgers equation, NoDEA, 1 (1994), 389-402. | MR 1300149 | Zbl 0824.35112

[5] Da Prato, G.-Elworthy, K. D.-Zabczyk, J., Strong Feller property for Stochastic Semilinear Equations, Stoch. Anal. and Appl. 1, Vol. 13 (1995), 35-45. | MR 1313205 | Zbl 0817.60081

[6] Da Prato, G.-Gatarek, D., Stochastic Burgers equation with correlated noise, Stochastics & Stoc. Rep., 52 (1995), 29-41. | Zbl 0853.35138

[7] Da Prato, G.-Zabczyk, J., Ergodicity for Infinite Dimensional Systems, Cambridge, 1996. | MR 1417491 | Zbl 0849.60052

[8] Da Prato, G.-Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambridge, 1992. | MR 1207136 | Zbl 0761.60052

[9] Doob, J. L., Asymptotic properties of Markov transition probability, Trans. Am. Math. Soc., 64 (1948), 393-421. | MR 25097 | Zbl 0041.45406

[10] Elworthy, K. D.-Li, X. M., Formulae for the Derivatives of Heat Semigroups, J. Funct. Anal., 125 (1994), 252-286. | MR 1297021 | Zbl 0813.60049

[11] Ferrario, B., Stochastic Navier-Stokes equations: analysis of the noise to have a unique invariant measure, to appear in Ann. Mat. Pura e Appl. | MR 1747638 | Zbl 0955.60065

[12] Ferrario, B., Pathwise regularity of non linear Ito equations. Application to a Stochastic Navier-Stokes equation., to appear in Stoc. Anal. Appl. | MR 1814204 | Zbl 0979.60049

[13] Ferrario, B., Invariant measures for the stochastic Navier-Stokes equations, Ph.D., Scuola Normale Superiore (1998), Pisa. | MR 1773594 | Zbl 0940.35213

[14] Flandoli, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA, 1 (1994), 403-423. | MR 1300150 | Zbl 0820.35108

[15] Flandoli, F., Regularity theory and stochastic flows for parabolic SPDE's, Stochastics Monographs9London: Gordon and Breach, 1995. | MR 1347450 | Zbl 0838.60054

[16] Flandoli, F.-Maslowski, B., Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 171 (1995), 119-141. | MR 1346374 | Zbl 0845.35080

[17] Giga, Y.-Miyakawa, T., Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. | MR 786550 | Zbl 0587.35078

[18] Jeng, D. T., Forced model equation for turbulence, Phys. Fluids12/10 (1969), 2006-2010. | Zbl 0187.51604

[19] Maslowski, B., On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics & Stoc. Rep., 45 (1993), 17-44. | Zbl 0792.60058

[20] Maslowski, B.-Seidler, J., Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math., 31 (1994), 969-1003. | MR 1315015 | Zbl 0820.60040

[21] Monin, A. S.-Yaglom, A. M., Statistical Fluid Mechanics, Cambridge, Mass., MIT Press, 1971.

[22] Seidler, J., Ergodic behaviour of stochastic parabolic equations, to appear in Czechoslovak Math. J. | MR 1452421 | Zbl 0935.60041

[23] Temam, R., Behaviour at time t=0 of the solutions of semi-linear evolution equations, J. Diff. Eq., 43 (1982), 73-92. | MR 645638 | Zbl 0446.35057

[24] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. | MR 953967 | Zbl 0662.35001

[25] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. | MR 764933 | Zbl 0833.35110