Transizioni di fase ed isteresi
Visintin, Augusto
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 31-77 / Harvested from Biblioteca Digitale Italiana di Matematica

L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.

Publié le : 2000-02-01
@article{BUMI_2000_8_3B_1_31_0,
     author = {Augusto Visintin},
     title = {Transizioni di fase ed isteresi},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {31-77},
     zbl = {1064.74139},
     mrnumber = {1755701},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_1_31_0}
}
Visintin, Augusto. Transizioni di fase ed isteresi. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 31-77. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_1_31_0/

[1] Abraham, F. F., Homogeneous Nucleation Theory, Academic Press, New York1974.

[2] Brice, J. C., The Growth of Crystals from Liquids, North-Holland, Amsterdam1973.

[3] Chalmers, B., Principles of Solidification, Wiley, New York1964.

[4] Christian, J. W., The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London1975.

[5] Doremus, R. H., Rates of Phase Transformations, Academic Press, Orlando1985.

[6] Flemings, M. C., Solidification Processing, McGraw-Hill, New York1973.

[7] Kurz, W.-Fisher, D. J., Fundamentals of Solidification, Trans Tech, Aedermannsdorf1989.

[8] R. Pamplin (ed.), Crystal Growth, Pergamon Press, Oxford 1975.

[9] Skripov, V. P., Metastable Liquids, Wiley, Chichester1974.

[10] Turnbull, D., Phase Changes, Solid State Physics, 3 (1956), 225-306.

[11] Ubbelohde, A. R., The Molten State of Matter, Wiley, Chichester1978.

[12] Woodruff, P. D., The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge1973.

[13] Alexiades, V.-Solomon, A. D., Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC1993.

[14] Brokate, M.-Sprekels, J., Hysteresis and Phase Transitions, Springer, Heidelberg1996. | MR 1411908 | Zbl 0951.74002

[15] Gurtin, M. E., Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford1993. | MR 1402243 | Zbl 0787.73004

[16] Meirmanov, A. M., The Stefan Problem, De Gruyter, Berlin1992 (Russian edition: Nauka, Novosibirsk 1986). | MR 1154310 | Zbl 0751.35052

[17] Romano, A., Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore1993. | MR 1347688 | Zbl 0827.73001

[18] Rubinstein, L., The Stefan Problem.A.M.S., Providence1971 (Russian edition: Zvaigzne, Riga 1967). | MR 222436

[19] Visintin, A., Models of phase transitions, Birkhauser, Boston1996. | MR 1423808 | Zbl 0882.35004

[20] Cannon, J. R., The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison Wesley, Menlo Park1984. | MR 747979 | Zbl 0567.35001

[21] Chapman, S. J.-Howison, S. D.-Ockendon, J. R., Macroscopic models for superconductivity, S.I.A.M. Rev., 34 (1992), 529-560. | MR 1193011 | Zbl 0769.73068

[22] Danilyuk, I. I., On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. | MR 810813 | Zbl 0604.35080

[23] Fasano, A., Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario1987. | MR 914370 | Zbl 0642.35081

[24] Fasano, A., Esperienza di collaborazione con industrie su programmi a lungo termine, Boll. Un. Matem. Ital., 7-A (1997), 1-40. | Zbl 0973.00517

[25] Fasano, A., Phase transition with supercooling, Boll. Un. Matem. Ital., (8) (1998), 49-69. | MR 1619031 | Zbl 0903.35095

[26] Magenes, E., Problemi di Stefan bifase in piu variabili spaziali, Le Matematiche, 36 (1981), 65-108. | MR 736797 | Zbl 0545.35096

[27] Magenes, E., Stefan problems with a concentrated capacity, Boll. Un. Matem. Ital., (8) (1998), 71-81. | MR 1619035 | Zbl 0904.35103

[28] Niezgoóldka, M., Stefan-like problems, In: Free Boundary Problems: Theory and Applications (A. Fasano, M. Primicerio, eds.). Pitman, Boston 1983, pp. 321-347. | MR 714922

[29] Oleĭnik, O. A.-Primicerio, M.-Radkevich, E. V., Stefan-like problems, Meccanica, 28 (1993), 129-143. | Zbl 0786.76091

[30] Primicerio, M., Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univers. Politecn. Torino, 32 (1973-74), 183-206. | MR 477466 | Zbl 0307.76048

[31] Primicerio, M., Problemi di diffusione a frontiera libera, Boll. Un. Matem. Ital., 18-A (1981), 11-68. | Zbl 0468.35082

[32] Rodrigues, J.-F., The variational inequality approach to the one-phase Stefan problem, Acta Applicandae Mathematicae, 8 (1987), 1-35. | MR 871691 | Zbl 0653.35083

[33] Tarzia, D. A., A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Progetto Nazionale M.P.I. «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche», Firenze, 1988. | MR 1007840 | Zbl 0694.35221

[34] Verdi, C., Numerical methods for phase transition problems, Boll. Un. Matem. Ital., (8) (1998), 83-108. | MR 1619039 | Zbl 0896.65064

[35] Visintin, A., Introduction to the models of phase transitions, Bull. Un. Matem. Ital., I-B (1998), 1-47. | MR 1619027 | Zbl 0903.35097

[36] Wilson, D. G.-Solomon, A. D.-Trent, J. S., A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory, 1979.

[37] A. Bossavit-A. Damlamian-M. Frémond (EDS.), Free Boundary Problems: Theory and Applications, Pitman, Boston 1985.

[38] J. M. Chadam-H. Rasmussen (EDS.), Emerging Applications in Free Boundary Problems, Longman, Harlow 1993. | MR 1216352

[39] J. M. Chadam-H. Rasmussen (eds.), Free Boundary Problems Involving Solids, Longman, Harlow 1993. | MR 1216392

[40] J. M. Chadam-H. Rasmussen (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow 1993. | MR 1216373

[41] J. I. Diaz-M. A. Herrero-A. Liñán, J. L. Vázquez (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow 1995. | MR 1342322

[42] A. Fasano-M. Primicerio (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston 1983. | MR 714939 | Zbl 0504.00012

[43] K.-H. Hoffmann-J. Sprekels (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow 1990. | Zbl 0703.00015

[44] H. Hoffmann-J. Sprekels (eds.), Free Boundary Value Problems, Birkhäuser, Boston 1990. | MR 1111018 | Zbl 0702.00021

[45] N. Kenmochi-M. Niezgódka-P. Strzelecki (eds.), Nonlinear Analysis and Applications, Gakkotosho, Tokyo 1996. | MR 1422923

[46] E. Magenes (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma 1980.

[47] M. Niezgódka-P. Strzelecki (EDS.), Free Boundary Problems: Theory and Applications, Longman, Harlow 1996. | MR 1462964 | Zbl 0856.00025

[48] J. R. Ockendon-W. R. Hodgkins (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford 1975. | Zbl 0295.76064

[49] D. G. Wilson-A. D. Solomon-P. T. Boggs (eds.), Moving Boundary Problems, Academic Press, New York 1978. | MR 466887 | Zbl 0432.00011

[50] Athanassopoulos, I.-Caffarelli, L. A.-Salsa, S., Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434. | MR 1394964 | Zbl 0853.35049

[51] Athanassopoulos, I.-Caffarelli, L. A.-Salsa, S., Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). | Zbl 0891.35164

[52] Athanassopoulos, I.-Caffarelli, L. A.-Salsa, S., Phase transition problems of parabolic type: flat free boundaries are smooth, Comm. Pure Appl. Math., 51 (1998), 77-112. | MR 1486632 | Zbl 0924.35197

[53] Baiocchi, C., Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. | MR 408443 | Zbl 0258.76069

[54] Baiocchi, C.-Capelo, A., Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester1983. | MR 745619 | Zbl 0551.49007

[55] Berger, A. E.-Brézis, H.-Rogers, J. W., A numerical method for solving the problem ut-Δfu=0, R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. | MR 555381 | Zbl 0426.65052

[56] Berger, A. E.-Rogers, J. W., Some properties of the nonlinear semigroup for the problem ut-Δfu=0, Nonlinear Analysis, T.M.A., 8 (1984), 909-939. | MR 753767 | Zbl 0557.35129

[57] Brézis, H., On some degenerate nonlinear parabolic equations, In: Nonlinear Functional Analysis (F. E. Browder, ed.). Proc. Symp. Pure Math., XVIII A.M.S., Providence 1970, pp. 28-38. | MR 273468 | Zbl 0231.47034

[58] Caffarelli, L. A., The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. | MR 454350 | Zbl 0386.35046

[59] Caffarelli, L. A., Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. | MR 466965 | Zbl 0393.35064

[60] Caffarelli, L. A.-Evans, L. C., Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. | MR 683353 | Zbl 0516.35080

[61] Caffarelli, L. A.-Friedman, A., Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J., 28 (1979), 53-70. | MR 523623 | Zbl 0406.35032

[62] Cannon, J. R.-Hill, C. D., On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. | MR 225013 | Zbl 0167.10504

[63] Damlamian, A., Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. | Zbl 0483.35004

[64] Dibenedetto, E., Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. | MR 677695 | Zbl 0458.35098

[65] Dibenedetto, E., Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. | MR 663969 | Zbl 0503.35018

[66] Dibenedetto, E.-Vespri, V., On the singular equation βut=Δu, Arch. Rational Mech. Anal., 132 (1995), 247-309. | MR 1365831 | Zbl 0849.35060

[67] Donnelly, J. D. P., A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. | MR 556152 | Zbl 0426.35060

[68] Duvaut, G., Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. | MR 328346 | Zbl 0258.35037

[69] Duvaut, G., The solution of a two-phase Stefan by a variational inequality, In: Moving Boundary Problems in Heat Flow and Diffusion (J. R. Ockendon, W. R. Hodgkins, eds.), Clarendon Press, Oxford 1975, pp. 173-181.

[70] Evans, G. W., A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. | Zbl 0043.41101

[71] Fasano, A.-Primicerio, M., General free boundary problems for the heat equation, J. Math. Anal. Appl.: I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. | Zbl 0355.35037

[72] Fasano, A.-Primicerio, M., Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. | MR 552335 | Zbl 0421.35080

[73] Fasano, A.-Primicerio, M., Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. | MR 784301 | Zbl 0578.35087

[74] Fasano, A.-Primicerio, M., Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. | MR 805431 | Zbl 0591.35088

[75] Fasano, A.-Primicerio, M., A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. | MR 819213 | Zbl 0594.35092

[76] Fasano, A.-Primicerio, M., A critical case for the solvability of Stefan-like problems, Math. Meth. Appl. Sci., 5 (1983), 84-96. | MR 690897 | Zbl 0526.35078

[77] Fasano, A.-Primicerio, M.-Kamin, S., Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. | MR 477460 | Zbl 0378.35008

[78] Frémond, M., Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, In: Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. Oden, ed.). University of Texas, Austin (1974), pp. 341-349. | MR 398299 | Zbl 0316.76063

[79] Friedman, A., Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. | Zbl 0199.42301

[80] Friedman, A., Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs1964. | MR 181836 | Zbl 0144.34903

[81] Friedman, A., The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. | MR 227625 | Zbl 0162.41903

[82] Friedman, A., One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. | MR 227626 | Zbl 0162.42001

[83] Friedman, A., Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. | MR 407452 | Zbl 0329.35034

[84] Friedman, A.-Kinderlehrer, D., A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. | MR 385326 | Zbl 0334.49002

[85] Götz, I.G.-Zaltzman, B. B., Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. | MR 1134749 | Zbl 0756.35119

[86] Jiang, L. S., The two-phase Stefan problem. I, II, Chinese Math., 4 (1963), 686-702; 5 (1964), 36-53. | Zbl 0149.31601

[87] Kamenomostskaya, S., On the Stefan problem, Math. Sbornik, 53 (1961), 489-514 (Russian). | Zbl 0102.09301

[88] Kinderlehrer, D.-Nirenberg, L., Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. | MR 440187 | Zbl 0352.35023

[89] Kinderlehrer, D.-Nirenberg, L., The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. | MR 480348 | Zbl 0391.35060

[90] Kolodner, I. I., Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. | Zbl 0070.43803

[91] Lamé, G., Clayperon, B.P., Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256.

[92] Luckhaus, S., Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. | MR 1117346 | Zbl 0734.35159

[93] Meirmanov, A. M., On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. | Zbl 0498.35087

[94] Meirmanov, A. M., On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. U.S.S.R.-Sbornik, 40 (1981), 157-178. | Zbl 0467.35053

[95] Meirmanov, A. M., An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. | MR 620870 | Zbl 0545.35097

[96] Oleĭnik, O. A., A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. | MR 125341 | Zbl 0131.09202

[97] Primicerio, M., Mushy regions in phase-change problems, In: Applied Functional Analysis (R. Gorenflo, K.-H. Hoffmann, eds.). Lang, Frankfurt (1983), pp. 251-269. | MR 685609 | Zbl 0518.35087

[98] J.-F. Rodrigues (ed.), Mathematical Models for Phase Change Problems, Birkhäuser, Basel 1989. | MR 1038061 | Zbl 0676.00021

[99] Rubinstein, L., On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. | MR 22979 | Zbl 0032.13101

[100] Rubinstein, L.-Fasano, A.-Primicerio, M., Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. | MR 605212 | Zbl 0456.35096

[101] Schaeffer, D., A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations, 20 (1976), 266-269. | MR 390499 | Zbl 0314.35044

[102] Sestini, G., Esistenza di una soluzione in problemi analoghi a quello di Stefan, Rivista Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. | Zbl 0048.43406

[103] Showalter, R. E., Mathematical formulation of the Stefan problem, Int. J. Eng. Sc., 20 (1982), 909-912. | MR 660566 | Zbl 0506.76103

[104] Stefan, J., Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442. | JFM 21.1197.01

[105] Visintin, A., Two-scale Stefan problem with surface tension, In: Nonlinear Analysis and Applications (N. Kenmochi, M. Niezgódka, P. Strzelecki, eds.) (Gakkotosho, Tokyo 1996), 405-424. | MR 1422948 | Zbl 0868.35144

[106] Visintin, A., Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. | MR 1460449 | Zbl 0935.80005

[107] Visintin, A., Nucleation and mean curvature flow, Communications in P.D.E.s, 23 (1998), 17-35. | MR 1608492 | Zbl 0901.53045

[108] Ziemer, W. P., Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. | MR 654859 | Zbl 0506.35053

[109] Bertotti, G., Hysteresis in Magnetism, Academic Press, Boston1998.

[110] Brokate, M., Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ, Lang, Frankfurt am Main (1987). English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991), 53 (1992). | MR 1031251 | Zbl 0691.49025

[111] Brokate, M.-Sprekels, J., Hysteresis and Phase Transitions, Springer, Berlin1996 | MR 1411908 | Zbl 0951.74002

[112] Della Torre, E., Magnetic Hysteresis, IEEE Press, 1999.

[113] Iványi, A., Hysteresis Models in Electromagnetic Computation, Akademḿiai Kiado, Budapest, 1997.

[114] Krasnosel'Skĭ, M. A.-Pokrovskiĭ, A. V., Systems with Hysteresis, Springer, Berlin1989 (Russian ed. Nauka, Moscow 1983). | MR 987431 | Zbl 0665.47038

[115] Krejčí, P., Convexity, Hysteresis and Dissipation in Hyperbolic Equations, Gakkotosho, Tokyo1997. | Zbl 1187.35003

[116] Mayergoyz, I. D., Mathematical Models of Hysteresis, Springer, New York1991. | MR 1083150 | Zbl 0723.73003

[117] Visintin, A., Differential Models of Hysteresis, Springer, Berlin1994. | MR 1329094 | Zbl 0820.35004

[118] Brokate, M., Elastoplastic constitutive laws of nonlinear kinematic hardening type, In: Functional analysis with current applications in science, technology and industry (M. Brokate, A. H. Siddiqi, eds.), Longman, Harlow (1998), pp. 238-272. | MR 1607891 | Zbl 0911.73021

[119] Huo, Y.-Mueller, I., Non-equilibrium thermodynamics of pseudoelasticity, Cont. Mech. Thermodyn., 5 (1993), 163-204. | Zbl 0780.73006

[120] Krasnosel'Skiĭ, M. A., Equations with non-linearities of hysteresis type, VII Int. Konf. Nichtlin. Schwing., Berlin 1975; Abh. Akad. Wiss. DDR, 3 (1977), 437-458 (Russian). | Zbl 0406.93032

[121] Krejčí, P., Evolution variational inequalities and multidimensional hysteresis operators, In: Nonlinear differential equations (P. Drábek, P. Krejčí, P. Takáč, eds.) Research Notes in Mathematics, Chapman & Hall/CRC, London (1999), pp. 47-110. | Zbl 0949.47053

[122] Mueller, I., Six lectures on shape memory, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 125-161. | MR 1619114 | Zbl 0909.73013

[123] Macki, J. W.-Nistri, P.-Zecca, P., Mathematical models for hysteresis, S.I.A.M. Review, 35 (1993), 94-123. | MR 1207799 | Zbl 0771.34018

[124] Visintin, A., Mathematical models of hysteresis, In: Topics in Nonsmooth Mechanics (J. J. Moreau, P. D. Panagiotopoulos, G. Strang, eds.), Birkhäuser, Basel 1988, pp. 295-326. | MR 957094 | Zbl 0656.73043

[125] Visintin, A., Mathematical models of hysteresis, In: Modelling and optimization of distributed parameter systems (K. Malanowski et al., ed.), Chapman and Hall, (1996), pp. 71-80 | MR 1388519 | Zbl 0906.93006

[126] Visintin, A., Mathematical models of hysteresis. A survey, In: Nonlinear Partial Differential Equations. College de France. Vol. XIII (D. Cioranescu, J. L. Lions, eds.), Longman, Harlow (1998), pp. 327-338. | MR 1773088 | Zbl 1007.47034

[127] Visintin, A., Six talks on hysteresis, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 207-236. | MR 1619117 | Zbl 0918.35067

[128] Brokate, M.-Dressler, K.-Krejčí, P.-Seidman, T. I.-Tavernini, L.-Visintin, A., Contributions to the session on Problems in Hysteresis, In: Nonlinear Analysis, Proceedings of the First World Congress of Nonlinear Analysts (ed. V. Laksmikantham), De Gruyter, Berlin (1996), 797-806. | Zbl 0858.47039

[129] Brokate, M.-Kenmochi, N.-Müller, I.-Rodrigues, J. F.-Verdi, C. (A. Visintin, ed.), Phase Transitions and Hysteresis, Lecture Notes in Mathematics, vol. 1584. Springer, Berlin 1994. | MR 1321829

[130] A. Visintin (ed.), Models of Hysteresis, Proceedings of a meeting held in Trento in 1991. Longman, Harlow 1993. | MR 1235109 | Zbl 0785.00016

[131] Bossavit, A.-Emson, C.-Mayergoyz, I. D., Géométrie différentielle, éléments finis, modèles d'hystérésis, Eyrolles, Paris1991.

[132] Bouc, R., Solution périodique de l'équation de la ferrorésonance avec hystérésis, C.R. Acad. Sci. Paris, Serie A, 263 (1966), 497-499. | MR 201106 | Zbl 0152.42103

[133] Bouc, R., Modèle mathématique d'hystérésis et application aux systèmes à un degré de liberté, These, Marseille1969. | Zbl 0237.73020

[134] Brokate, M., Optimale Steuerung von gewohnlichen Differentialgleichungen mit Nichtlinearitaten vom Hysteresis-Typ, Habilitations Schrift. Lang, Frankfurt am Main1987. English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991) and 53 (1992). | MR 1031251 | Zbl 0691.49025

[135] Brokate, M., On a characterization of the Preisach model for hysteresis, Rend. Sem. Mat. Padova, 83 (1990), 153-163. | MR 1066436 | Zbl 0719.47053

[136] Chernorutskii., V.-Rachinskii, D.: On uniqueness of an initial-problem for ODE with hysteresis, NoDEA, 4 (1997), 391-399. | MR 1458534 | Zbl 0882.34004

[137] Damlamian, A.-Visintin, A., Une géneralisation vectorielle du modèle de Preisach pour l'hystérésis, C. R. Acad. Sci. Paris, Serie I, 297 (1983), 437-440. | MR 732853 | Zbl 0546.35068

[138] Duhem, P., The evolution of mechanics, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980. Original edition: L'évolution de la méchanique. Joanin, Paris1903. | Zbl 0424.01002

[139] Hilpert, M., On uniqueness for evolution problems with hysteresis, In: Mathematical Models for Phase Change Problems (J. F. Rodrigues, ed.) (Birkhauser, Basel 1989), 377-388. | MR 1038080 | Zbl 0701.35009

[140] Hoffmann, K.-H.-Sprekels, J.-Visintin, A., Identification of hysteresis loops, J. Comp. Phys., 78 (1988), 215-230. | MR 959083 | Zbl 0659.65125

[141] Ishlinskiĭ, A.Y., Some applications of statistical methods to describing deformations of bodies, Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9 (1944), 580-590 (Russian).

[142] Madelung, E., Uber Magnetisierung durch schnellverlaufende Strome und die, Wirkungsweise des Rutherford-Marconischen Magnetdetektors. Ann. Phys., 17 (1905), 861-890.

[143] Krasnosel’Skiĭ, M.A.-Darinskiĭ, B. M.-Emelin, I. V.-Zabreĭko, P. P., Lifsic, E. A. - Pokrovskiĭ, A. V., Hysterant operator, Soviet Math. Soviet Dokl., 11 (1970), 29-33. | Zbl 0212.58002

[144] Mayergoyz, I. D., Mathematical models of hysteresis, Phys. Rev. Letters, 56 (1986), 1518-1521.

[145] Mayergoyz, I. D., Mathematical models of hysteresis, I.E.E.E. Trans. Magn., 22 (1986), 603-608.

[146] Mróz, Z., On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15 (1967), 163-175.

[147] Müller, I., A model for a body with shape-memory, Arch. Rational Mech. Anal., 70 (1979), 61-77. | MR 535632

[148] Müller, I., On the size of hysteresis in pseudoelasticity, Continuum Mech. Thermodyn., 1 (1989), 125-142. | MR 1050819

[149] Néel, L., Theorie des lois d’aimantation de Lord Rayleigh. I. Les déplacements d’une paroi isolée; II. Multiples domaines et champ coercive, Cahiers de Physique, 12 (1942), 1-20; 13 (1943), 18-30.

[150] Prandtl, L.: Spannungverteilung in plastischen Körpern, In: Proc. 1st Intern. Congr. Appl. Mech. Delft (1924), pp. 43-54.

[151] Prandtl, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math. Mech., 8 (1928), 85-106. | JFM 54.0847.04

[152] Preisach, F., Über die magnetische Nachwirkung, Z. Physik, 94 (1935), 277-302.

[153] Rayleigh, On the behaviour of iron and steel under the operation of feeble magnetic forces, Phil. Mag., 23 (1887), 225-248. | JFM 19.1131.04

[154] Verdi, C.-Visintin, A., Numerical approximation of hysteresis problems, I.M.A. J. Numer. Anal., 5 (1985), 447-463. | MR 816068 | Zbl 0608.65082

[155] Verdi, C.-Visintin, A., Numerical approximation of the Preisach model for hysteresis, Math. Model. and Numer. Anal., 23 (1989), 335-356. | MR 1001333 | Zbl 0672.65115

[156] Visintin, A., A model for hysteresis of distributed systems, Ann. Mat. Pura Appl., 131 (1982), 203-231. | MR 681564 | Zbl 0494.35052

[157] Visintin, A., On the Preisach model for hysteresis, Nonlinear Analysis, T.M.A., 9 (1984), 977-996. | MR 760191 | Zbl 0563.35007

[158] Visintin, A., Hysteresis and semigroups, In: Models of hysteresis (A. Visintin, ed.), Longman, Harlow (1993), pp. 192-206. | MR 1235125 | Zbl 0834.35033

[159] Visintin, A., Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365-369.

[160] Weiss, P.-De Freudenreich, J., Etude de l’aimantation initiale en fonction de la température (suite et fin), Arch. Sci. Phys. Nat., (Genève), 42 (1916), 449-470.

[161] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden1976. | MR 390843 | Zbl 0328.47035

[162] Bénilan, H., Equations d’Évolution dans un Espace de Banach Quelconque et Applications, Thèse, Orsay 1972.

[163] Bertsch, M.-Podio-Guidugli, P.-Valente, V., On the dynamics of deformable ferromagnets 1. Global weak solutions for soft ferromagnets at rest, Preprint, 1999. | Zbl 1097.74017

[164] Brézis, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam1973. | MR 348562 | Zbl 0252.47055

[165] Brown, W. F. Jr., Micromagnetics, Krieger, Huntington1978.

[166] Carslaw, H. S.-Jaeger, J. C., Conduction of heat in solids, Clarendon Press and Oxford University Press, New York, 1988. | MR 959730 | Zbl 0972.80500

[167] Duvaut, G.-Lions, J. L., Les Inéquations en Mécanique et en Physique, Dunod, Paris1972. | MR 464857 | Zbl 0298.73001

[168] Landau, L.-Lifshitz, E., On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Physik. Z. Sowietunion, 8 (1935), 153-169.

[169] Landau, L.-Lifshitz, E., Statistical physics, Pergamon Press, Oxford1969. | MR 475051 | Zbl 0080.19702

[170] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris1969. | MR 259693 | Zbl 0189.40603

[171] Visintin, A., On Landau-Lifshitz equations in ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84. | MR 839320 | Zbl 0613.35018

[172] Weiss, P., L’hypothèse du champ moléculaire et la proprièté ferromagnétique, J. Physique, 6 (1907), 661-690.