Global existence and regularity of solutions for complex Ginzburg-Landau equations
Descombes, Stéphane ; Moussaoui, Mohand
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 193-211 / Harvested from Biblioteca Digitale Italiana di Matematica

Si considerano equazioni di Ginzburg-Landau complesse del tipo ut-αΔu+Pu2u=0 in RN dove P è polinomio di grado K a coefficienti complessi e α è un numero complesso con parte reale positiva α. Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo P sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso α<Cα, dove C dipende da K e N.

Publié le : 2000-02-01
@article{BUMI_2000_8_3B_1_193_0,
     author = {St\'ephane Descombes and Mohand Moussaoui},
     title = {Global existence and regularity of solutions for complex Ginzburg-Landau equations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {193-211},
     zbl = {1102.35335},
     mrnumber = {1755709},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_1_193_0}
}
Descombes, Stéphane; Moussaoui, Mohand. Global existence and regularity of solutions for complex Ginzburg-Landau equations. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 193-211. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_1_193_0/

[1] Doering, C. R.-Gibbon, J. D.-Levermore, C. D., Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), n. 3, 285-318. | MR 1264120 | Zbl 0810.35119

[2] Dore, G.-Venni, A., On the closedness of the sum of two closed operators, Mathematische Zeitschrift, 195 (1997), 279-286. | Zbl 0615.47002

[3] Fauve, S.-Thual, O., Localized structures generated by subcritical instabilities, J. Phys. France, 49 (1988), 1829-1833.

[4] Ginibre, J.-Velo, G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Physica D, 95 (1996), no. 3-4, 191-228. | MR 1406282 | Zbl 0889.35045

[5] Ginibre, J.-Velo, G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys., 187 (1997), no. 1, 45-79. | MR 1463822 | Zbl 0889.35046

[6] Hiber, M.-Prüss, J., Heat kernels and maximal Lp-Lq estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), no. 9-10, 1647-1669. | MR 1469585 | Zbl 0886.35030

[7] Ladyzhenskaya, O. A.-Solonnikov, V. A.-Ural'Tseva, N. N., Linear and quasilinear equations of parabolic type, Nauka, Moscou, (1967); English transl. Amer. Math. Soc.Providence, RI (1968). | Zbl 0174.15403

[8] De Mottoni, P.-Schatzman, M., Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, Volume 347, Number 5 (1995), 1533-1589. | MR 1672406 | Zbl 0840.35010

[9] Prüss, J.-Sohr, H., On operators with bounded imaginary powers in Banach spaces, Mathematische Zeitschrift, 203 (1990), 429-452. | MR 1038710 | Zbl 0665.47015

[10] Prüss, J.-Sohr, H., Imaginary powers of elliptic second order differential operators in Lp-spaces, Hiroshima Math. J., 23 (1993), no. 1, 161-192. | MR 1211773 | Zbl 0790.35023

[11] Seeley, R., Norms and domains of the complex powers ABz, Am. Jour. Math., 93 (1971), 299-309. | MR 287376 | Zbl 0218.35034

[12] Tribel, H., Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amterdam, New York, Oxford (1978). | Zbl 0387.46032