Si considerano equazioni di Ginzburg-Landau complesse del tipo in dove è polinomio di grado a coefficienti complessi e è un numero complesso con parte reale positiva . Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso , dove dipende da e .
@article{BUMI_2000_8_3B_1_193_0, author = {St\'ephane Descombes and Mohand Moussaoui}, title = {Global existence and regularity of solutions for complex Ginzburg-Landau equations}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3-A}, year = {2000}, pages = {193-211}, zbl = {1102.35335}, mrnumber = {1755709}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_1_193_0} }
Descombes, Stéphane; Moussaoui, Mohand. Global existence and regularity of solutions for complex Ginzburg-Landau equations. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 193-211. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_1_193_0/
[1] Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 71 (1994), n. 3, 285-318. | MR 1264120 | Zbl 0810.35119
- - ,[2] On the closedness of the sum of two closed operators, Mathematische Zeitschrift, 195 (1997), 279-286. | Zbl 0615.47002
- ,[3] Localized structures generated by subcritical instabilities, J. Phys. France, 49 (1988), 1829-1833.
- ,[4] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Physica D, 95 (1996), no. 3-4, 191-228. | MR 1406282 | Zbl 0889.35045
- ,[5] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys., 187 (1997), no. 1, 45-79. | MR 1463822 | Zbl 0889.35046
- ,[6] Heat kernels and maximal - estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), no. 9-10, 1647-1669. | MR 1469585 | Zbl 0886.35030
- ,[7] | Zbl 0174.15403
- - , Linear and quasilinear equations of parabolic type, Nauka, Moscou, (1967); English transl. Amer. Math. Soc.Providence, RI (1968).[8] Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, Volume 347, Number 5 (1995), 1533-1589. | MR 1672406 | Zbl 0840.35010
- ,[9] On operators with bounded imaginary powers in Banach spaces, Mathematische Zeitschrift, 203 (1990), 429-452. | MR 1038710 | Zbl 0665.47015
- ,[10] Imaginary powers of elliptic second order differential operators in -spaces, Hiroshima Math. J., 23 (1993), no. 1, 161-192. | MR 1211773 | Zbl 0790.35023
- ,[11] Norms and domains of the complex powers , Am. Jour. Math., 93 (1971), 299-309. | MR 287376 | Zbl 0218.35034
,[12] | Zbl 0387.46032
, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amterdam, New York, Oxford (1978).