Se la varietà base, , di una submersione quasi-Hermitiana, , è una -varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, , è . Se la varietà base, , è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, , è Hermitiano.
@article{BUMI_2000_8_3B_1_159_0, author = {Bill Watson}, title = {Superminimal fibres in an almost Hermitian submersion}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3-A}, year = {2000}, pages = {159-172}, zbl = {0956.53018}, mrnumber = {1755707}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_1_159_0} }
Watson, Bill. Superminimal fibres in an almost Hermitian submersion. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 159-172. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_1_159_0/
[Bo] Sur une classe de surfaces minima plone'es dans un space á quatre dimensions a courbure constante, C. R. Acad. Sci., 187 (1928), 334-336. | JFM 54.0795.02
,[Br] Conformal and minimal immersions of compact surfaces into the -sphere, J. Differential Geom., 17 (1982), 455-473. | MR 679067 | Zbl 0498.53046
,[Ca] Minimal immersions of surfaces into Euclidean spheres, J. Differential Geom., 1 (1967), 111-125. | MR 233294 | Zbl 0171.20504
,[Fa-Pa] A note on almost Kähler and nearly Kähler submersions, (preprint), 1998. | Zbl 0967.53023
- ,[Fr1] On surfaces in four-spaces, Ann. Global Anal. & Geom., 2 (1984), 257-287. | Zbl 0562.53039
,[Fr2] On superminimal surfaces, Arch. Math. (Brno), 33 (1997), 41-56. | MR 1464300 | Zbl 1022.53050
,[Gr1] Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 12 (1965), 273-287. | MR 184185 | Zbl 0132.16702
,[Gr2] Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-738. | MR 205184 | Zbl 0147.21201
,[Gr-He] The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl.CXXIII (1980), 35-58. | MR 581924 | Zbl 0444.53032
- ,[Gu-Wo] Harmonic morphisms between almost Hermitian manifolds, Boll. Un. Mat. Ital.11-B, Supp. 2 (1997), 185-197. | MR 1456260 | Zbl 0879.53023
- ,[He-Vid] Nouvelles géométries pseudo-Kähleriennes et , C. R. Acad. Sci. Paris283 (1976), 115-118. | MR 431008 | Zbl 0331.53026
- ,[Jo] Kähler submersions and holomorphic connections, J. Diff. Geometry15 (1980), 71-79. | MR 602440 | Zbl 0442.53030
,[Ko-No] | MR 238225 | Zbl 0175.48504
- , Foundations of Differential Geometry, Vol. II, Interscience, New York1969.[Kw] Über Flachen des vierdimensionalen Raumes, deren sämtliche Tangentialbenen untereinander gleichwinklig sind, und ihre Beziehung zu ebenen Kurven, Dissertation, Zürich, 1902. | JFM 34.0702.01
,[Mi-Mo] Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. Math., 127 (1988), 199-227. | MR 924677 | Zbl 0661.53027
- ,[O'N] The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459-469. | MR 200865 | Zbl 0145.18602
,[Wa1] Almost Hermitian submersions, J. Diff. Geometry, 11 (1976), 147-165. | MR 407784 | Zbl 0355.53037
,[Wa2] The four-dimensional Goldberg Conjecture is true for almost Kähler submersions (to appear) J. of Geometry, 1999. | MR 1800470 | Zbl 0979.53081
,[Wa-Va1] J-symmetries and J-linearities of the configuration tensors of an almost Hermitian submersion, Simon Stevin, 51 (1977), 139-156. | MR 482558 | Zbl 0379.53038
- ,[Wa-Va2] The structure equation of an almost semi-Kähler submersion, Houston Math. J., 5 (1979), 295-305. | MR 546764 | Zbl 0423.53028
- ,