Nello spazio delle variabili aleatorie subgaussiane definite su si studia l'equivalenza tra la norma subgaussiana e la norma di Fernique, dando valutazioni numeriche delle costanti di equivalenza. A tale scopo si fa uso di una nuova caratterizzazione della norma subgaussiana delle variabili aleatorie simmetriche.
@article{BUMI_2000_8_3B_1_147_0, author = {Rita Giuliano Antonini}, title = {Subgaussianity and exponential integrability of real random variables: comparison of the norms}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3-A}, year = {2000}, pages = {147-157}, zbl = {0955.60016}, mrnumber = {1755706}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3B_1_147_0} }
Giuliano Antonini, Rita. Subgaussianity and exponential integrability of real random variables: comparison of the norms. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 147-157. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3B_1_147_0/
[1] | MR 833073 | Zbl 0571.60002
, Some random series of functions, Cambridge University Press, 1985.[2] Sub-gaussian random variables, Ukrainan Math. J., 32 (1980), 483-489. | MR 598605 | Zbl 0479.60012
- ,[3] Subgaussian random variables in Hilbert spaces, Rend. Sem. Mat. Univ. Padova, 98 (1997), 89-99. | MR 1492970 | Zbl 0892.60049
,[4] On the asymptotic behaviour of subgaussian processes, Atti Sem. Mat. Fis. Univ. Modena, XLVI (1998), 339-347. | MR 1665907 | Zbl 0922.60037
,[5] Exponential integrability of sub-gaussian vectors, Prob. Th. Rel. Fields, 85 (1990), 505-521. | MR 1061942 | Zbl 0675.60007
,[6] Banach spaces of random variables of subgaussian tupe, Theor. Probab. and Math. Stat., 32 (1986), 45-56. | Zbl 0626.60026
- ,[7] 480, Springer1974. | MR 413238 | Zbl 0331.60025
, Régularité des trajectoires des fonctions aléatoires gaussiennes, Lect. Notes Math.