Applicazioni dell’algebra differenziale all’identificabilità strutturale di modelli non lineari
Margaria, Gabriella
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 379-382 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2000-12-01
@article{BUMI_2000_8_3A_3_379_0,
     author = {Gabriella Margaria},
     title = {Applicazioni dell'algebra differenziale all'identificabilit\`a strutturale di modelli non lineari},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {379-382},
     zbl = {Zbl 1053.13503},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3A_3_379_0}
}
Margaria, Gabriella. Applicazioni dell’algebra differenziale all’identificabilità strutturale di modelli non lineari. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 379-382. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3A_3_379_0/

[1] Boulier, F., Lazard, D., Ollivier, F. e Petitot, M., Computing representation for radicals of finitely generated differential ideal, Technical Report, Laboratoire d’Informatique Fondamentale de Lille (1999). | Zbl 1185.12003

[2] Chappel, M.J., Godfrey, K.R. e Vajda, S., Global identifiability of parameters of non linear systems with specified inputs: A comparison of methods, Mathematical Biosciences, 102(1990), 41-73. | Zbl 0789.93039

[3] Chappel, M.J., Margaria, G., Riccomagno, E. e Wynn, H.P., Differential algebra methods for the study of the structural identifiability of biological rational polynomial models, Submitted to Mathematical Biosciences | Zbl 1006.92003

[4] Fliess, M. e Glad, S.T., An algebraic approach to linear and non linear control, In Trentelman H.L. e Willems J.C., EDITORS, Essays on Control: Perspectives in the Theory and its applications, 14(1993). | Zbl 0838.93021

[5] Margaria, G., Application of Differential Algebra to the Identifiability of Nonlinear Models, Proceedings IFAC Symposium on Modelling and Control in Biomedical Systems, 30 marzo-1 aprile 2000.

[6] Ollivier, F., Generalised standard bases with applications to control, ECC91 European Control Conference, 1(1991), 170-176.

[7] Pohjanpalo, H., System identifiability based on the power series expansion of the solution, Mathematical Biosciences, 41(1978), 21-33. | MR 507373 | Zbl 0393.92008

[8] Ritt, J.F., Differential algebra, American Mathematical Society (1950) | MR 35763 | Zbl 0037.18402

[9] Walter, E., Identifiability of State Space Models, Springer-Verlag(1982) | MR 672773

[10] Wang, D., An implementation of the characteristic set method in Maple, In Wang D. e Pfalzgraf J., EDITORS, Automated practical reasoning: algebraic approaches (1995), 187-201. | MR 1340206 | Zbl 0837.68110