Obiettivi e metodi di ricerca in didattica della matematica
Schoenfeld, Alan H.
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 175-199 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2000-08-01
@article{BUMI_2000_8_3A_2_175_0,
     author = {Alan H. Schoenfeld},
     title = {Obiettivi e metodi di ricerca in didattica della matematica},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {175-199},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3A_2_175_0}
}
Schoenfeld, Alan H. Obiettivi e metodi di ricerca in didattica della matematica. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 175-199. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3A_2_175_0/

[1] Artigue, M., The Teaching and Learning of Mathematics at the University Level: Crucial Questions for Contemporary Research in Education, Notices Amer. Math. Soc., 46(1999), 1377-1385. Artigue, M., L’insegnamento e l’apprendimento dell Matematica a livello universitario (traduzione del precedente lavoro), Bollettino U.M.I., La Matematica nella Società e nella Cultura, Serie VIII, Vol. III-A, Aprile 2000, 81-103. | MR 1723247 | Zbl 0974.00010

[2] Asiala, M. - Brown, A. - Devries, D. - Dubinsky, E. - Mathews, D. - Thomas, K., A framework for research and curriculum development in undergraduate mathematics education, Research in Collegiate Mathematics Education (J. Kaput, A. Schoenfeld and E. Dubinsky, eds.), vol. II, Conference Board of the Mathematical Sciences, Washington, DC, pp. 1-32.

[3] Ausubel, D. P., Educational Psychology: A Cognitive View, Holt-Reinhardt-Winston, New York, 1968.

[4] Brown, J. S. - Burton, R. R., Diagnostic models for procedural bugs in basic mathematical skills, Cognitive Science, 2(1978), 155-192.

[5] R. G. Douglas (ED.), Toward a Lean and Lively Calculus, MAA Notes Number 6, Mathematical Association of America, Washington, DC, 1986.

[6] Lecompte, M. - Millroy, W. - Preissle, J., Handbook of Qualitative Research in Education, Academic Press, New York, 1992.

[7] Leinhardt, G., On the messiness of overlapping goals in real settings, Issues in Education, 4(1998), 125-132.

[8] Miller, G., The magic number seven, plus or minus two: some limits on our capacityfor processing information, Psychological Review, 63(1956), 81-97.

[9] Schoenfeld, A. H., Mathematical Problem Solving, Academic Press, Orlando, FL, 1985. | Zbl 0655.00020

[10] A. H. Schoenfeld (ed.) Student Assessment in Calculus, MAA Notes Number 43, Mathematical Association of America, Washington, DC, 1997. | Zbl 0886.00002

[11] Schoenfeld, A. H., On theory and models: The case of Teaching-in-Context, Proceedings of the XX Annual Meeting of the International Group for Psychology and Mathematics Education (Sarah B. Berenson, ed.), Psychology and Mathematics Education, Raleigh, NC, 1998a.

[12] Schoenfeld, A. H., Toward a theory of teaching-in-context, Issues in Education, 4(1998b), 1-94.

[13] Schoenfeld, A. H., Models of the Teaching Process, Journal of Mathematical Behavior (in stampa).

[14] D. Tall (ed.), Advanced Mathematical Thinking, Kluwer, Dordrecht, 1991. | MR 1145739 | Zbl 0848.00010