@article{BUMI_2000_8_3A_1S_157_0, author = {Andrea Pascucci}, title = {Su una classe di operatori differenziali ipoellittici del second'ordine}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {3-A}, year = {2000}, pages = {157-160}, zbl = {1053.35506}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3A_1S_157_0} }
Pascucci, Andrea. Su una classe di operatori differenziali ipoellittici del second’ordine. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 157-160. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3A_1S_157_0/
[1] Principe du maximum, inègalitè de Harnack et unicitè du problème de Cauchy pour les opèrateurs elliptiques dègènèrès, Ann. Inst. Fourier, Grenoble, 19-1 (1969), 277-304. | MR 262881 | Zbl 0176.09703
,[2] On the blowing-up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo, Sect., I-13 (1966), 109-124. | MR 214914 | Zbl 0163.34002
,[3] Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann., 283 (1989), 211-239. | MR 980595 | Zbl 0638.35003
, ,[4] Estimates for the fundamental solution and Wiener’s criterion for the heat equation on the Heisenberg group, Indiana U. Math. J., 39-4 (1990), 1155-1196. | MR 1087188 | Zbl 0808.35046
, ,[5] Superparabolic functions related to second order hypoelliptic operators, apparirà su Potential Analysis. | Zbl 0940.35054
, ,[6] On the fundamental solution for hypoelliptic second order partial differential operators with non-negative characteristic form, apparirà su Ricerche di Matematica. | Zbl 0965.35005
, ,[7] Generalized subharmonic functions: monotonic approximations and an improved maximum principle, Ann. Sc. Norm. Super. Pisa, Cl. Sci., III Ser., 17 (1963), 207-222. | MR 177186 | Zbl 0123.29104
,[8] Fujita type results for a class of degenerate parabolic operators, apparirà su Advances Diff. Eq. | Zbl 0978.35024
,