Su una classe di operatori differenziali ipoellittici del second’ordine
Pascucci, Andrea
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 157-160 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2000-04-01
@article{BUMI_2000_8_3A_1S_157_0,
     author = {Andrea Pascucci},
     title = {Su una classe di operatori differenziali ipoellittici del second'ordine},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {157-160},
     zbl = {1053.35506},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3A_1S_157_0}
}
Pascucci, Andrea. Su una classe di operatori differenziali ipoellittici del second’ordine. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 157-160. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3A_1S_157_0/

[1] Bony, J. M., Principe du maximum, inègalitè de Harnack et unicitè du problème de Cauchy pour les opèrateurs elliptiques dègènèrès, Ann. Inst. Fourier, Grenoble, 19-1 (1969), 277-304. | MR 262881 | Zbl 0176.09703

[2] Fujita, H., On the blowing-up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo, Sect., I-13 (1966), 109-124. | MR 214914 | Zbl 0163.34002

[3] Garofalo, N., Lanconelli, E., Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann., 283 (1989), 211-239. | MR 980595 | Zbl 0638.35003

[4] Garofalo, N., Segala, F., Estimates for the fundamental solution and Wiener’s criterion for the heat equation on the Heisenberg group, Indiana U. Math. J., 39-4 (1990), 1155-1196. | MR 1087188 | Zbl 0808.35046

[5] Lanconelli, E., Pascucci, A., Superparabolic functions related to second order hypoelliptic operators, apparirà su Potential Analysis. | Zbl 0940.35054

[6] Lanconelli, E., Pascucci, A., On the fundamental solution for hypoelliptic second order partial differential operators with non-negative characteristic form, apparirà su Ricerche di Matematica. | Zbl 0965.35005

[7] Littman, W., Generalized subharmonic functions: monotonic approximations and an improved maximum principle, Ann. Sc. Norm. Super. Pisa, Cl. Sci., III Ser., 17 (1963), 207-222. | MR 177186 | Zbl 0123.29104

[8] Pascucci, A., Fujita type results for a class of degenerate parabolic operators, apparirà su Advances Diff. Eq. | Zbl 0978.35024