Algebre di Lie graduate in caratteristica due
Jurman, Giuseppe
Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000), p. 105-108 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2000-04-01
@article{BUMI_2000_8_3A_1S_105_0,
     author = {Giuseppe Jurman},
     title = {Algebre di Lie graduate in caratteristica due},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {3-A},
     year = {2000},
     pages = {105-108},
     zbl = {1053.17515},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2000_8_3A_1S_105_0}
}
Jurman, Giuseppe. Algebre di Lie graduate in caratteristica due. Bollettino dell'Unione Matematica Italiana, Tome 3-A (2000) pp. 105-108. http://gdmltest.u-ga.fr/item/BUMI_2000_8_3A_1S_105_0/

[1] Albert, A. A. e Frank, M. S., Simple Lie algebras of characteristic p, Univ. e Politec. Torino. Rend. Sem. Mat., 14 (1954-55), 117-139. | MR 79222 | Zbl 0065.26801

[2] Bonmassar, C. e Scoppola, C. M., Normally constrained p-groups, Boll. Un. Mat. It. (1997), in corso di pubblicazione. | MR 1794548 | Zbl 0920.20016

[3] Caranti, A. e Jurman, G., Quotients of maximal class of thin Lie algebras. The odd characteristic case. (1998), in preparazione. | MR 1726275 | Zbl 0940.17013

[4] Caranti, A. e Mattarei, S. e Newman, M. F., Graded Lie algebras of maximal class, Trans. Amer. Math. Soc., 349 (1997), 4021-4051. | MR 1443190 | Zbl 0895.17031

[5] Caranti, A. e Mattarei, S. e Newman, M. F. e Scoppola, C. M., Thin groups of prime- power order and thin Lie algebras, Quart. J. Math. Oxford Ser. (2), 47 (1996), 279-296. | MR 1412556 | Zbl 0865.20016

[6] Caranti, A. e Newman, M. F., Graded Lie algebras of maximal class. II (1998), in preparazione. | Zbl 0971.17015

[7] Carrara, C., (Finite) presentations of loop algebras of Albert-Frank Lie algebras, Tesi di dottorato, Dipartimento di Matematica, Università di Trento (1998).

[8] Havas, G., Newman, M. F. e O’Brien, E. A., ANU p-Quotient Program (version 1.4), written in C, available as a share library with GAP an d as part of Magma, or from http://wwwmaths.anu.edu.au/services/ftp.html (1997).

[9] Leedham-Green, C. R., The structure of finite p-groups, J. London Math. Soc. (2), 50 (1994), 49-67. | MR 1277754 | Zbl 0822.20018

[10] Leedham-Green, C. R., Plesken, W. e Klaas, G., Pro-p-groups of finite width, Lecture Notes in Mathematics, 1674 (1997). | MR 1483894 | Zbl 0901.20013

[11] Lucas, È., Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France, 6 (1878), 49-54. | JFM 10.0139.04 | MR 1503769

[12] Shalev, A., The structure of finite p-groups: effective proof of the coclass conjectures, Invent. Math., 115 (1994), 315-345. | MR 1258908 | Zbl 0795.20009

[13] Shalev, A., Simple Lie algebras and Lie algebras of maximal class, Arch. Math. (Basel), 63 (1994), 297-301. | MR 1290602 | Zbl 0803.17006