In questo lavoro si studiano condizioni sufficienti sulla funzione peso , espresse in termini di integrabilità, per la validità della disuguaglianza dove denota una sfera in . Usando una tecnica di decomposizione di immersioni si dimostrano condizioni sufficienti in termini di appartenenza a spazi di Lebesgue, Lorentz-Orlicz e/o di tipo debole. Come applicazioni vengono fornite condizioni sufficienti per la proprietà forte di prolungamento unico per nelle dimensioni 2 e 3.
@article{BUMI_1999_8_2B_3_629_0, author = {Miroslav Krbec and Thomas Schott}, title = {Superposition of imbeddings and Fefferman's inequality}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2-A}, year = {1999}, pages = {629-637}, zbl = {0948.46023}, mrnumber = {1719550}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_3_629_0} }
Krbec, Miroslav; Schott, Thomas. Superposition of imbeddings and Fefferman's inequality. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 629-637. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_3_629_0/
[1] On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.)CLXXV (1980), 1-72. | MR 576995 | Zbl 0456.46028
- ,[2] A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Equations, 5 (1980), 773-789. | MR 579997 | Zbl 0437.35071
- ,[3] Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat., 26(B), 1-9. | Zbl 0022.34201
,[4] Unique continuation for and C. Fefferman-Phong class, Trans. Amer. Math. Soc., 318 (1990), 275-300. | MR 958886 | Zbl 0702.35034
- ,[5] On decomposition in exponential Orlicz spaces, in preparation. | Zbl 0971.46019
- ,[6] The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206. | MR 707957 | Zbl 0526.35080
,[7] A note on two notions of unique continuation, Bull. Soc. Math. Belg. Ser. B, 45, No. 3 (1993), 257-268. | MR 1316725 | Zbl 0828.35035
- ,[8] Unique continuation and absence of positive eigenvalues for Schrödinger operator, Ann. of Math., 121 (1985), 463-488. | MR 794370 | Zbl 0593.35119
- ,[9]
- , Convex functions and Orlicz spaces, Noordhof, Groningen (1961); English transl. from the first Russian edition Gos. Izd. Fiz. Mat. Lit., Moskva (1958).[10] On imbeddings between weighted Orlicz-Lorentz spaces, Georgian Math. J., 4 (1997), 117-128. | MR 1439590 | Zbl 0899.46022
- ,[11] Comparison of Orlicz-Lorentz spaces, Studia Math., 103(2) (1992), 161-189. | MR 1199324 | Zbl 0814.46023
,[12] 1034, Berlin (1983). | MR 724434 | Zbl 0557.46020
, Orlicz spaces and modular spaces, Springer-Verlag, Lecture Notes in Math., Vol.[13] Unique continuation for Schrödinger operators with singular potentials, Comm. Partial Diff. Equations, 17 (1992), 953-965. | MR 1177300 | Zbl 0810.35005
,[14] Appendix to «Unique continuation», Ann. of Math., 121 (1985), 489-494. | MR 794370
,[15] On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. | MR 216286 | Zbl 0163.36402
,[16] Note on counterexamples in strong unique continuation problems, Proc. Amer. Math. Soc., 114 (1992), 351-356. | MR 1014648 | Zbl 0744.35012
, , Weakly differentiable functions, Springer, New York (1989).