Optimal integrability of the Jacobian of orientation preserving maps
Cianchi, Andrea
Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999), p. 619-628 / Harvested from Biblioteca Digitale Italiana di Matematica

Dato un qualsiasi spazio invariante per riordinamenti XΩ su un insieme aperto ΩRn, si determina il più piccolo spazio invariante per riordinamenti YΩ con la proprietà che se u:ΩRn è una applicazione che mantiene l'orientamento e DunXΩ, allora detDu appartiene localmente a YΩ.

Publié le : 1999-10-01
@article{BUMI_1999_8_2B_3_619_0,
     author = {Andrea Cianchi},
     title = {Optimal integrability of the Jacobian of orientation preserving maps},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2-A},
     year = {1999},
     pages = {619-628},
     zbl = {0937.46037},
     mrnumber = {1719554},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_3_619_0}
}
Cianchi, Andrea. Optimal integrability of the Jacobian of orientation preserving maps. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 619-628. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_3_619_0/

[AM] Ariño, M. A.-Muckenhoupt, B., Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc., 320 (1990), 727-735. | MR 989570 | Zbl 0716.42016

[BP] Bagby, R. J.-Parsons, J. D., Orlicz spaces and rearranged maximal functions, Math. Nachr., 132 (1987), 15-27. | MR 910041 | Zbl 0662.46031

[BS] Bennett, C.-Sharpley, R., Interpolation of Operators, Academic Press, Boston (1988). | MR 928802 | Zbl 0647.46057

[BFS] Brezis, H.-Fusco, N.-Sbordone, C., Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal., 115 (1993), 425-431. | MR 1234399 | Zbl 0847.26012

[BF] Butzer, P. L.-Fehér, F., Generalized Hardy and Hardy-Littlewood inequalities in rearrangement-invariant spaces, Comment. Math. Prace Mat., Tomus Specialis in Honorum Ladislai Orlicz (1978), 41-64. | MR 504152 | Zbl 0385.26013

[CGS] Carro, M. J.-García Del Amo, A.-Soria, J., Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc., 124 (1996), 849-857. | MR 1307501 | Zbl 0853.42016

[C] Cianchi, A., Hardy inequalities in Orlicz spaces, Trans. Amer. Math. Soc., to appear. | MR 1433113 | Zbl 0920.46021

[G] Greco, L., Sharp results on integrability of the Jacobian, preprint Univ. Napoli.

[GI] Greco, L.-Iwaniec, T., New inequalities for the Jacobian, Ann. Inst. Poincaré, Analyse non linéaire, 11 (1994), 17-35. | MR 1259100 | Zbl 0848.58051

[GIM] Greco, L.-Iwaniec, T.-Moscariello, G., Limits of the improved integrability of volume forms, Indiana Univ. Math. J., 44 (1995), 305-339. | MR 1355401 | Zbl 0855.42009

[IS] Iwaniec, T.-Sbordone, C., On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mech. Anal., 119 (1992), 129-143. | MR 1176362 | Zbl 0766.46016

[K1] Kita, H., On maximal functions in Orlicz spaces, Proc. Amer. Math. Soc., 124 (1996), 3019-3025. | MR 1376993 | Zbl 0862.42014

[K2] Kita, H., On a converse inequality for maximal functions in Orlicz spaces, Studia Math., 118 (1996), 1-10. | MR 1373619 | Zbl 0845.42008

[L] Lorentz, G. G., Relations between function spaces, Proc. Amer. Math. Soc., 12 (1961), 127-132. | MR 123182 | Zbl 0124.31704

[Mi] Milman, M., Inequalities for Jacobians: interpolation techniques, Rev. Colombiana Mat., 27 (1993), 67-81. | MR 1252243 | Zbl 0830.46024

[Mo1] Montgomery-Smith, S. J., Comparison of Orlicz-Lorentz spaces, Studia Math., 103 (1992), 161-189. | MR 1199324 | Zbl 0814.46023

[Mo2] Montgomery-Smith, S. J., Boyd indices of Orlicz-Lorentz spaces, in Function spaces (K. Jarosz ed.), Marcel Dekker, New York (1995), 321-334. | MR 1352239 | Zbl 0838.46024

[Mos] Moscariello, G., On the integrability of the Jacobian in Orlicz spaces, Math. Japonica, 40 (1992), 323-329. | MR 1297249 | Zbl 0805.46026

[Mü] Müller, S., Higher integrability of determinants and weak convergence in L1, J. reine angew. Math., 412 (1990), 20-34. | MR 1078998 | Zbl 0713.49004

[S] Sawyer, E. T., Boundedness of classical operators in classical Lorentz spaces, Studia Math., 96 (1990), 145-158. | MR 1052631 | Zbl 0705.42014