Si dimostra l'esistenza di infinite soluzioni «multi-bump» - e conseguentemente il comportamento caotico - per una classe di sistemi Hamiltoniani del secondo ordine della forma per sufficientemente piccolo. Qui , e sono funzioni strettamente positive e periodiche e è un potenziale superquadratico (ad esempio ).
@article{BUMI_1999_8_2B_3_585_0, author = {Vittorio Coti Zelati and Margherita Nolasco}, title = {Multibump solutions for Hamiltonian systems with fast and slow forcing}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2-A}, year = {1999}, pages = {585-608}, zbl = {0940.37008}, mrnumber = {1719562}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_3_585_0} }
Coti Zelati, Vittorio; Nolasco, Margherita. Multibump solutions for Hamiltonian systems with fast and slow forcing. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 585-608. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_3_585_0/
[1] Genericity of the multibump dynamics for almost periodic duffing-like systems, preprint, SISSA, Trieste (1997). | MR 1719214 | Zbl 0941.34032
- - ,[2] Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300. | MR 1486895 | Zbl 0896.35042
- - ,[3] Homoclinics and complex dynamics in slowly oscillating systems, Discrete Contin. Dynam. Systems (1998). | MR 1612728 | Zbl 0952.34037
- ,[4] A variational interpretation of Melnikov's function and exponentially small separatrix splitting, Symplectic Geometry (Cambridge) ( , ed.), London Math. Soc. Lecture Note, no. 192, Cambridge University Press (1993), 5-35. | MR 1297127 | Zbl 0810.34037
,[5] Homoclinic solutions of quasiperiodic Lagrangian systems, Differential Integral Equations, 8 (1995), 1733-1760. | MR 1347977 | Zbl 0827.34037
- ,[6] Homoclinic and period-doubling bifurcations for damped systems, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 12 (1995), 1-25. | MR 1320566 | Zbl 0836.34044
,[7] Multi-peak periodic semiclassical states for a class of nonlinear Schroedinger equations, Proc. Roy. Soc. Edinburgh Sect. A (1998), to appear. | MR 1664105 | Zbl 0922.35158
- ,[8] Solutions doublement asymptotiques de systèmes Hamiltoniens convexes, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 631-633. | MR 1065426 | Zbl 0703.70020
- - ,[9] Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 77-99. | MR 1433313 | Zbl 0878.34045
- - ,[10] Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. | MR 1119200 | Zbl 0744.34045
- ,[11] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137. | MR 1379196 | Zbl 0844.35032
- ,[12] An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys., 150 (1992), 433-463. | MR 1204314 | Zbl 0765.70016
- ,[13] | MR 1342018 | Zbl 0923.34049
- , Discretization of homoclinic orbits, rapid forcing and «invisible» chaos, Memoirs of the AMS, no. 570, American Mathematical Society, Providence (1996).[14] Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408. | MR 867665 | Zbl 0613.35076
- ,[15] Existence of multi-bump solutions for nonlinear Schrodinger equations via variational method, Comm. Partial Differential Equations, 21 (1996), 787-820. | MR 1391524 | Zbl 0857.35116
,[16] On a singularly perturbed elliptic equation, preprint, Rutgers University (1997).
,[17] The concentration-compactness principle in the calculus of variations. The locally compact case, part 1., Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1 (1984), 109-145. | MR 778970 | Zbl 0541.49009
,[18] On the stability of the center for periodic perturbations, Trans. Moscow Math. Soc., 12 (1963), 1-57. | MR 156048 | Zbl 0135.31001
,[19] A global condition for periodic Duffing-like equations, Trans. Amer. Math. Soc., to appear. | MR 1487629 | Zbl 0926.37005
- - ,[20] Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems, Calc. Var. Partial Differential Equations, 5 (1997), 423-555. | MR 1473307 | Zbl 0886.58014
- - ,[21] Existence of semiclassical bound states of nonlinear Schrödinger equations with potential in the class , Comm. Partial Differential Equations, 13 (1988), 1499-1519. | MR 970154 | Zbl 0702.35228
,[22]
, Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1897-1899).[23] Multibump solutions for an almost periodically forced singular Hamiltonian system, Electron. J. Differential Equations, 1995 (1995), no. 12, 1-21. | MR 1348521 | Zbl 0828.34034
,[24] Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42. | MR 1143210 | Zbl 0725.58017
,[25] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 10 (1993), no. 5, 561-590. | MR 1249107 | Zbl 0803.58013
,[26] On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 13 (1996), 783-812. | MR 1420498 | Zbl 0873.58032
- - ,