Asymptotic analysis for the Ginzburg-Landau equations
Rivière, Tristan
Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999), p. 537-575 / Harvested from Biblioteca Digitale Italiana di Matematica

Questo lavoro costituisce un survey sui problemi di limite asintotico per le soluzioni delle equazioni di Ginzburg-Landau in dimensione due. Vengono presentati essenzialmente i risultati di [BBH] e [BR] sulla formazione ed il comportamento asintotico dei vortici in un dominio bidimensionale nel caso fortemente repulsivo (large K limit).

Publié le : 1999-10-01
@article{BUMI_1999_8_2B_3_537_0,
     author = {Tristan Rivi\`ere},
     title = {Asymptotic analysis for the Ginzburg-Landau equations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2-A},
     year = {1999},
     pages = {537-575},
     zbl = {0939.35199},
     mrnumber = {1719570},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_3_537_0}
}
Rivière, Tristan. Asymptotic analysis for the Ginzburg-Landau equations. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 537-575. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_3_537_0/

[1] Almeida, L.-Bethuel, F., Multiplicity results for the Ginzburg-Landau equation in presence of symmetries, Houston J. Math., 23 (1997), 733-764. | MR 1687389 | Zbl 0901.35029

[2] Almeida, L.-Bethuel, F., Topological Methods for the Ginzburg-Landau Equations, J. Math. Pures Appl., 77 (1998), 1-49. | MR 1617594 | Zbl 0904.35023

[3] Bethuel, F.-Brezis, H.-Hélein, F., Asymptotics for the minimization of a Ginzburg-Landau functional, Calculus of variations and PDE1 (1993), 123-148. | MR 1261720 | Zbl 0834.35014

[4] Bethuel, F.-Brezis, H.-Hélein, F., Ginzburg-Landau vortices, Birkhaüser (1994). | MR 1269538 | Zbl 0802.35142

[5] Bethuel, F.-Rivière, T., Vortices for a variational problem related to supraconductivity, Ann. Inst. Henri Poincaré (analyse non linéaire), 12, 3 (1995), 243-303. | MR 1340265 | Zbl 0842.35119

[6] Bethuel, F.-Rivière, T., Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité, Ecole Polytechnique, Séminaire EDP XVI (1994). | MR 1300912 | Zbl 0876.35112

[7] Jaffe, A.-Taubes, C., Vortices and Monopoles, Birkhäuser (1980). | MR 614447 | Zbl 0457.53034

[8] Jerrard, R.-Soner, M., Dynamics of Ginzburg-Landau Vortices, to appear in Arch. Rat. Mech. Anal. | Zbl 0923.35167

[9] Lin, F. H., Some Dynamical properties of Ginzburg-Landau Vortices, Comm. Pure and App. Math (1996), 323-359. A remark on the previous paper..., Comm. Pure and App. Math. (1996), 361-364. | MR 1376654 | Zbl 0853.35059

[10] Lin, F. H., Complex Ginzburg-Landau Equations and Dynamics of Vortices, Filaments and Codimension 2 Submanifolds, preprint (1997). | MR 1491752 | Zbl 0932.35121

[11] Lin, F. H.-Lin, T. C., Minimax solutions of the Ginzburg-Landau equations, preprint (1996). | Zbl 0876.49006

[12] Lin, F. H.-Rivière, T., Complex Ginzburg-Landau Equations in High Dimensions and Codimension two Area Minimizing Currents, to appear. | Zbl 0939.35056

[13] Pacard, F.-Rivière, T., Construction of Ginzburg-Landau solutions having regular zero-set for large coupling constant, preprint CMLA ENS-Cachan (1998).

[14] Pacard, F.-Rivière, T., A uniqueness result for the minimizers of the Ginzburg-Landau Functional, preprint CMLA ENS-Cachan (1998).

[15] Rivière, T., Line vortices in the U1-Higgs Model, C.O.C.V., 1 (1996), 77-167. | MR 1394302 | Zbl 0874.53019

[16] Saint-James, D.-Sarma, G.-Thomas, E. J., Type II Superconductivity, Pergamon Press (1969).

[17] Serfaty, S., Local minimizers for the Ginzburg-Landau energy near Critical Magnetic Field, preprint Orsay (1997). | Zbl 0944.49007

[18] Struwe, M., On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2-dimensions, J. Diff. Int. Equations, 7 (1994), 1613-1624 and Erratum in J. Diff. Int. | MR 1269674 | Zbl 0809.35031