ϕ-symmetric spaces and weak symmetry
Berndt, Jürgen ; Vanhecke, Lieven
Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999), p. 389-392 / Harvested from Biblioteca Digitale Italiana di Matematica

Proviamo che tutti gli spazi semplicemente connessi ϕ-simmetrici sono debolmente simmetrici e quindi commutativi.

Publié le : 1999-06-01
@article{BUMI_1999_8_2B_2_389_0,
     author = {J\"urgen Berndt and Lieven Vanhecke},
     title = {$\phi$-symmetric spaces and weak symmetry},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2-A},
     year = {1999},
     pages = {389-392},
     zbl = {0978.53091},
     mrnumber = {1706568},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_2_389_0}
}
Berndt, Jürgen; Vanhecke, Lieven. $\phi$-symmetric spaces and weak symmetry. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 389-392. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_2_389_0/

[1] Berndt, J., Tondeur, Ph., Vanhecke, L., Examples of weakly symmetric spaces in contact geometry, Boll. Un. Mat. Ital., (7) 11-B (1997), Suppl. fasc. 2, 1-10. | MR 1456247 | Zbl 0880.53041

[2] Berndt, J.-Tricerri, F.-Vanhecke, L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Springer-Verlag, Berlin, Heidelberg (1995). | MR 1340192 | Zbl 0818.53067

[3] Berndt, J.-Vanhecke, L., Geometry of weakly symmetric spaces, J. Math. Soc. Japan, 48 (1996), 745-760. | MR 1404821 | Zbl 0877.53027

[4] Blair, D. E., Contact Manifolds in Riemannian Geometry, Lect. Notes. Math., 509, Springer-Verlag, Berlin, Heidelberg, New York (1976). | MR 467588 | Zbl 0319.53026

[5] Helgason, S., Groups and Geometric Analysis, Academic Press, Orlando (1984). | MR 754767 | Zbl 0543.58001

[6] Jiménez, J. A., Stiefel manifolds and non-commutative ϕ-symmetric spaces, preprint.

[7] Jiménez, J. A.-Kowalski, O., The classification of ϕ-symmetric Sasakian manifolds, Monatsh. Math., 115 (1993), 83-98. | MR 1223246 | Zbl 0781.53038

[8] Kowalski, O.-Prüfer, F.-Vanhecke, L., D'Atri spaces, in Topics in Geometry, In Memory of Joseph D'Atri, Birkhäuser, Boston, Basel, Berlin (1996), 241-284. | MR 1390318 | Zbl 0862.53039

[9] Lauret, J., Commutative spaces which are not weakly symmetric, Bull. London Math. Soc., to appear. | MR 1479033 | Zbl 0921.22007

[10] Lauret, J., Modified H-type groups and symmetric-like Riemannian spaces, preprint 1997. | MR 1669469 | Zbl 0942.53034

[11] Leung, D. S. P., Reflective submanifolds. III. Congruency of isometric reflective submanifolds and corrigenda to the classification of reflective submanifolds, J. Diff. Geom., 14 (1979), 167-177. | MR 587545 | Zbl 0453.53044

[12] Reckziegel, H., Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion, in Global Differential Geometry and Global Analysis 1984, Lect. Notes Math., 1156, Springer-Verlag, Berlin, Heidelberg, New York (1985), 264-279. | MR 824074 | Zbl 0566.53025

[13] Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87. | MR 88511 | Zbl 0072.08201

[14] Takahashi, T., Sasakian ϕ-symmetric spaces, Tôhoku Math. J., 29 (1977), 91-113. | MR 440472 | Zbl 0343.53030

[15] Takeuchi, M., Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J., 36 (1984), 293-314. | MR 742600 | Zbl 0528.53047