On the D-stability problem for real matrices
Johnson, Russell ; Tesi, Alberto
Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999), p. 299-314 / Harvested from Biblioteca Digitale Italiana di Matematica

Vengono discusse delle condizioni sufficienti affinchè una matrice reale A delle dimensioni n×n sia diagonalmente (o D-) stabile. Esse includono delle ipotesi geometriche (condizioni degli ortanti), e un criterio che generalizza un criterio di Carlson. Inoltre si discute la D-stabilità robusta per le matrici reali delle dimensioni 4×4

Publié le : 1999-06-01
@article{BUMI_1999_8_2B_2_299_0,
     author = {Russell Johnson and Alberto Tesi},
     title = {On the $D$-stability problem for real matrices},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2-A},
     year = {1999},
     pages = {299-314},
     zbl = {0936.15014},
     mrnumber = {1706600},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_2_299_0}
}
Johnson, Russell; Tesi, Alberto. On the $D$-stability problem for real matrices. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 299-314. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_2_299_0/

[1] Abed, E. H., Strong D-stability, Syst. Contr. Lett., 7 (1986), 207-212. | MR 847892 | Zbl 0597.34049

[2] Arrow, K.-Mcmanus, M., A note on dynamic stability, Econometrica, 26 (1958), 448-454. | MR 103767 | Zbl 0107.37201

[3] Bahl, C.-Cain, B., The inertia of diagonal multiples of 3×3 real matrices, Lin. Algebra Appl., 18 (1977), 267-280. | MR 573019 | Zbl 0379.15004

[4] Cain, B., Real 3×3D-stable matrices, J. Res. Nat. Bur. Standards, Sec. B, 80 (1976), 75-77. | MR 419478 | Zbl 0341.15009

[5] Carlson, D., A class of positive stable matrices, J. Res. Nat. Bur. Standards, Sec. B, 78 (1974), 1-2. | MR 332834 | Zbl 0281.15020

[6] Chen, J.-Fan, M. K. H.-Yu, C.-C., On D-stability and structured singular values, Sys. Cont. Lett., 24 (1995), 19-24. | MR 1307123 | Zbl 0877.93079

[7] Enthoven, A.-Arrow, K., A theorem on expectations and the stability of equilibrium, Econometrica, 24 (1956), 288-293. | MR 85963 | Zbl 0074.15001

[8] Fiedler, M.-Ptak, V., On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J., 12 (1962), 382-400. | MR 142565 | Zbl 0131.24806

[9] Fiedler, M.-Ptak, V., Some generalizations of positive definiteness and monotonicity, Numerische Mathematike, 9 (1966), 163-172. | MR 209309 | Zbl 0148.25801

[10] Gantmacher, B., The theory of matrices, Vols. I-II, Chelsea, New York (1960). | Zbl 0927.15001

[11] Hershkowitz, D., Recent directions in matrix stability, Lin. Algebra Appl., 171 (1992), 161-186. | MR 1165452 | Zbl 0759.15010

[12] Johnson, C., Sufficient conditions for D-stability, J. Economic Theory, 9 (1974), 53-62. | MR 463213

[13] Khalil, H.-Kokotovic, P., D-stability and multi-parameter singular perturbations, SIAM J. Cont. Opt., 17 (1979), 59-65. | MR 516856 | Zbl 0403.93026

[14] Lang, S., Algebra, Addison-Welsey, Reading, Mass., 1965. | MR 197234 | Zbl 0193.34701

[15] Seidenberg, A., A new decision method for elementary algebra, Ann. Math., 60 (1954), 365-374. | MR 63994 | Zbl 0056.01804