The Hartogs-type extension theorem for meromorphic mappings into q-complete complex spaces
Ivashkovich, Sergei ; Silva, Alessandro
Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999), p. 251-261 / Harvested from Biblioteca Digitale Italiana di Matematica

Si dimostra un risultato di prolungamento per applicazioni meromorfe a valori in uno spazio q-completo che generalizza direttamente il risultato classico di Hartogs e migliora risultati di K. Stein.

Publié le : 1999-06-01
@article{BUMI_1999_8_2B_2_251_0,
     author = {Sergei Ivashkovich and Alessandro Silva},
     title = {The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2-A},
     year = {1999},
     pages = {251-261},
     zbl = {0932.32019},
     mrnumber = {1706616},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_2_251_0}
}
Ivashkovich, Sergei; Silva, Alessandro. The Hartogs-type extension theorem for meromorphic mappings into $q$-complete complex spaces. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 251-261. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_2_251_0/

[B1] Barlet, D., Convexité de l'espace des cycles, Bull. Soc. Math. France, 106 (1978), 373-397. | MR 518045 | Zbl 0395.32009

[B2] Barlet, D., Espace analytique reduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Seminaire Norguet IX, Lect. Notes Math. (1975), 1-157. | MR 399503 | Zbl 0331.32008

[H] Hartogs, F., Zur Theorie der analytischen Funktionen mehrerer unabhängiger Verändenlichen insbesondere über die Darstellung derselben durch Reihen, wel che nach Potenzen einer Veränderlichen fortschreiten, Math. Ann., 62 (1906), 1-88. | MR 1511365

[I1] Ivashkovich, S., The Hartogs type extension Theorem for meromorphic maps into compact Kaehler manifolds, Invent. Math., 109 (1992), 47-54. | MR 1168365 | Zbl 0738.32008

[I2] Ivashkovich, S., Spherical shells as obstructions for the extension of holomorphic mappings, The Journal of Geometric Analysis, 2 (1992), 683-692. | MR 1170480 | Zbl 0772.32008

[I3] Ivashkovich, S., Continuity principle and extension properties of meromorphic mappings with values in non Kähler manifolds, MSRI Preprint No. 1997-033. | Zbl 1081.32010

[I4] Ivashkovich, S., One example in concern with extension and separate analyticity properties of meromorphic mappings, to appear in Amer. J. Math. | MR 1705000 | Zbl 0945.32004

[Kl] Klimek, M., Pluripotential theory, London. Math. Soc. Monographs, New Series6 (1991). | MR 1150978 | Zbl 0742.31001

[O] Ohsawa, T., Completeness of Noncompact Analytic Spaces, Publ. RIMS Kyoto Univ., 20 (1984), 683-692. | MR 759689 | Zbl 0568.32008

[R] Remmert, R., Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann., 133 (1957), 328-370. | MR 92996 | Zbl 0079.10201

[S1] Siu, Y.-T., Techniques of extension of analytic objects, Marcel Dekker, New York (1974). | MR 361154 | Zbl 0294.32007

[S2] Siu, Y.-T., Extension of meromorphic maps into Kähler manifolds, Ann. Math., 102 (1975), 421-462. | MR 463498 | Zbl 0318.32007

[St] Stein, K., Topics on holomorphic correspondences, Rocky Mountains J. Math., 2 (1972), 443-463. | MR 311945 | Zbl 0272.32001