The fibre of the Prym map in genus four
Hidalgo-Solís, Laura ; Recillas-Pishmish, Sevin
Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999), p. 219-229 / Harvested from Biblioteca Digitale Italiana di Matematica

In questa nota si dà una descrizione della fibra della mappa di Prym in genere 4. Se JX è la Jacobiana di una curva di genere 3, allora la fibra della mappa di Prym in JX si ottiene dalla varietà di Kummer KX mediante due scoppiamenti: σ1:KX0KX che è lo scoppiamento di KX nell'origine e σ2:KX0~KX0 che è lo scoppiamento lungo una curva isomorfa a X.

Publié le : 1999-02-01
@article{BUMI_1999_8_2B_1_219_0,
     author = {Laura Hidalgo-Sol\'\i s and Sevin Recillas-Pishmish},
     title = {The fibre of the Prym map in genus four},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2-A},
     year = {1999},
     pages = {219-229},
     zbl = {0945.14016},
     mrnumber = {1794551},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_1_219_0}
}
Hidalgo-Solís, Laura; Recillas-Pishmish, Sevin. The fibre of the Prym map in genus four. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 219-229. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_1_219_0/

[Be.1] Beauville, A., Prym varietes and the Schottky problem, Invent. Math., 41 (1977), 149-196. | MR 572974 | Zbl 0333.14013

[Be.2] Beauville, A., Variétés de Prym et Jacobiennes intermédiares, Ann. Sci. École Norm. Sup., 10 (1977), 309-391. | MR 472843 | Zbl 0368.14018

[DC-R] Del Centina, A.-Recillas, S., On a property of the Kummer variety and a relation between two moduli spaces of curves, in Algebraic Geometry and Complex Analysis, Proceedings, Lect. Notes in Math., 1414, Springer-Verlag (1989), 28-50. | Zbl 0722.14012

[DM] Deligne, P.-Mumford, D., The irreducibility of the space of curves of a given genus, Publ. Math. I.H.E.S., 36 (1969), 75-109. | MR 262240 | Zbl 0181.48803

[Do.] Donagi, R., The fibers of the Prym map, Cont. Math., Amer. Math. Soc., 136 (1992). | MR 1188194 | Zbl 0783.14025

[DS] Donagi, R.-Smith, R. C., The structure of the Prym map, Acta Math., 146 (1982), 25-102. | MR 594627 | Zbl 0538.14019

[F] Fay, J., Theta Functions on Riemann Surfaces, Lecture Notes, 352, Springer-Verlag (1973). | MR 335789 | Zbl 0281.30013

[FS] Friedman, R.-Smith, R., The generic Torelli theorem for the Prym map, Invent. Math., 74 (1982), 473-490. | MR 664116 | Zbl 0506.14042

[K] Kleiman, S., Algebraic Cycles and the Weil Conjectures, Advanced Studies in Pure Mathematics, North-Holland, 3, Amsterdam (1968). | MR 292838 | Zbl 0198.25902

[Har.] Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York (1977). | MR 463157 | Zbl 0367.14001

[Ma] Masiewicki, L., Universal properties of Prym varieties with an aplication to algebraic curves of genus five, Trans. Amer. Math. Soc, 222 (1976), 221-240. | MR 422289 | Zbl 0333.14012

[M] Mumford, D., Prym Varietes - I, Contributions to Analysis, Academic Press, New York (1974). | MR 379510 | Zbl 0299.14018

[GIT] Mumford, D.-Fogarty, J.-Kirwan, F., Geometric Invariant Theory, third edition, Springer-Verlag, Heidelberg (1994). | MR 1304906 | Zbl 0504.14008

[MP] Muñoz-Porras, J. M., Characterization of the Jacobian varieties in arbitrary characteristic, Comp. Math, 61 (1987), 369-381. | MR 883489 | Zbl 0624.14020

[P] Popp, H., Moduli theory and classification theory of algebraic varieties, Lecture Notes in Math., 620, Spinger-Verlag, Berlin-Heidelberg-New York (1977). | MR 466143 | Zbl 0359.14005

[Rec.1] S., Recillas, Jacobians of curves with g14's are Prym's varietes of trigonal curves, Bol. Soc. Mat. Mexicana, 19 (1974), 9-13. | MR 480505 | Zbl 0343.14012

[Rec.2] Recillas, S., Symmetric Cubic Surfaces and Curves of Genus 3 and 4, Boll. Un. Mat. (7), 7-B (1993), 787-819. | MR 1255648 | Zbl 0818.14005

[V] Verra, A., The Fibre of the Prym map in genus three, Math. Ann., 276 (1987), 433-448. | MR 875339 | Zbl 0588.14024

[W] Welters, G., Curves of twice the minimal class on principally polarized abelian variety, Nederl. Akad. Wetensh. Proc. Ser. A., 90 (1987), 87-109. | MR 883371 | Zbl 0644.14014