When is Zα seminormal or t-closed?
Picavet-L'Hermitte, Martine
Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999), p. 189-217 / Harvested from Biblioteca Digitale Italiana di Matematica

Sia a un intero algebrico con il polinomio minimale fX. Si danno condizioni necessarie e sufficienti affinché l'anello Zα sia seminormale o t-chiuso per mezzo di fX. Come applicazione, in particolare, si ottiene che se fX=X3+aX+b, a, bZ le condizioni sono espresse mediante il discriminante de fX.

Publié le : 1999-02-01
@article{BUMI_1999_8_2B_1_189_0,
     author = {Martine Picavet-L'Hermitte},
     title = {When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {2-A},
     year = {1999},
     pages = {189-217},
     zbl = {0921.13013},
     mrnumber = {1794550},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_1_189_0}
}
Picavet-L'Hermitte, Martine. When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 189-217. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_1_189_0/

[1] Albu, T., On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16 (1979), 65-69. | MR 527017 | Zbl 0404.13014

[2] Anderson, D. F.-Dobbs, D. E.-Huckaba, J. A., On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448. | MR 662709 | Zbl 0496.13001

[3] Dobbs, D. E.-Fontana, M., Seminormal rings generated by algebraic integers, Matematika, 34 (1987), 141-154. | MR 933493 | Zbl 0619.13002

[4] Ferrand, D.-Olivier, J. P., Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471. | MR 271079 | Zbl 0218.13011

[5] Maury, G., La condition «intégralement clos» dans quelques structures algébriques, Ann. Sci. Ecole Norm. Sup., 78 (1961), 31-100. | MR 141621 | Zbl 0254.13011

[6] Picavet, G.-Picavet-L'Hermitte, M., Morphismes t-clos, Comm. Algebra, 21 (1993), 179-219. | MR 1194555 | Zbl 0774.13002

[7] Picavet, G.-Picavet-L'Hermitte, M., Anneaux t-clos, Comm. Algebra, 23 (1995), 2643-2677. | MR 1330804 | Zbl 0857.13021

[8] Picavet-L'Hermitte, M., Decomposition of order morphisms into minimal morphisms, Math. J. Toyama Univ., 19 (1996), 17-45. | MR 1427684 | Zbl 0883.13005

[9] Samuel, P., Théorie Algébrique des Nombres (Hermann, Paris) 1967. | MR 215808 | Zbl 0146.06402

[10] Swan, R. G., On seminormality, J. Algebra, 67 (1980), 210-229. | MR 595029 | Zbl 0473.13001

[11] Tanimoto, H., Normality, seminormality and quasinormality of Zmn, Hiroshima Math. J., 17 (1987), 29-40. | MR 886979 | Zbl 0627.13003

[12] Uchida, K., When is Zα the ring of the integers?, Osaka J. Math., 14 (1977), 155-157. | MR 450255 | Zbl 0358.13006