Sia a un intero algebrico con il polinomio minimale . Si danno condizioni necessarie e sufficienti affinché l'anello sia seminormale o -chiuso per mezzo di . Come applicazione, in particolare, si ottiene che se , , le condizioni sono espresse mediante il discriminante de .
@article{BUMI_1999_8_2B_1_189_0,
author = {Martine Picavet-L'Hermitte},
title = {When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {2-A},
year = {1999},
pages = {189-217},
zbl = {0921.13013},
mrnumber = {1794550},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_1_189_0}
}
Picavet-L'Hermitte, Martine. When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 189-217. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_1_189_0/
[1] , On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16 (1979), 65-69. | MR 527017 | Zbl 0404.13014
[2] --, On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448. | MR 662709 | Zbl 0496.13001
[3] -, Seminormal rings generated by algebraic integers, Matematika, 34 (1987), 141-154. | MR 933493 | Zbl 0619.13002
[4] -, Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471. | MR 271079 | Zbl 0218.13011
[5] , La condition «intégralement clos» dans quelques structures algébriques, Ann. Sci. Ecole Norm. Sup., 78 (1961), 31-100. | MR 141621 | Zbl 0254.13011
[6] -, Morphismes -clos, Comm. Algebra, 21 (1993), 179-219. | MR 1194555 | Zbl 0774.13002
[7] -, Anneaux -clos, Comm. Algebra, 23 (1995), 2643-2677. | MR 1330804 | Zbl 0857.13021
[8] , Decomposition of order morphisms into minimal morphisms, Math. J. Toyama Univ., 19 (1996), 17-45. | MR 1427684 | Zbl 0883.13005
[9] , Théorie Algébrique des Nombres (Hermann, Paris) 1967. | MR 215808 | Zbl 0146.06402
[10] , On seminormality, J. Algebra, 67 (1980), 210-229. | MR 595029 | Zbl 0473.13001
[11] , Normality, seminormality and quasinormality of , Hiroshima Math. J., 17 (1987), 29-40. | MR 886979 | Zbl 0627.13003
[12] , When is the ring of the integers?, Osaka J. Math., 14 (1977), 155-157. | MR 450255 | Zbl 0358.13006