Sia a un intero algebrico con il polinomio minimale . Si danno condizioni necessarie e sufficienti affinché l'anello sia seminormale o -chiuso per mezzo di . Come applicazione, in particolare, si ottiene che se , , le condizioni sono espresse mediante il discriminante de .
@article{BUMI_1999_8_2B_1_189_0, author = {Martine Picavet-L'Hermitte}, title = {When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2-A}, year = {1999}, pages = {189-217}, zbl = {0921.13013}, mrnumber = {1794550}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2B_1_189_0} }
Picavet-L'Hermitte, Martine. When is $\mathbb{Z}[\alpha]$ seminormal or $t$-closed?. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 189-217. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2B_1_189_0/
[1] On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16 (1979), 65-69. | MR 527017 | Zbl 0404.13014
,[2] On seminormal overrings, Comm. Algebra, 10 (1982), 1421-1448. | MR 662709 | Zbl 0496.13001
- - ,[3] Seminormal rings generated by algebraic integers, Matematika, 34 (1987), 141-154. | MR 933493 | Zbl 0619.13002
- ,[4] Homomorphismes minimaux d'anneaux, J. Algebra, 16 (1970), 461-471. | MR 271079 | Zbl 0218.13011
- ,[5] La condition «intégralement clos» dans quelques structures algébriques, Ann. Sci. Ecole Norm. Sup., 78 (1961), 31-100. | MR 141621 | Zbl 0254.13011
,[6] Morphismes -clos, Comm. Algebra, 21 (1993), 179-219. | MR 1194555 | Zbl 0774.13002
- ,[7] Anneaux -clos, Comm. Algebra, 23 (1995), 2643-2677. | MR 1330804 | Zbl 0857.13021
- ,[8] Decomposition of order morphisms into minimal morphisms, Math. J. Toyama Univ., 19 (1996), 17-45. | MR 1427684 | Zbl 0883.13005
,[9] | MR 215808 | Zbl 0146.06402
, Théorie Algébrique des Nombres (Hermann, Paris) 1967.[10] On seminormality, J. Algebra, 67 (1980), 210-229. | MR 595029 | Zbl 0473.13001
,[11] Normality, seminormality and quasinormality of , Hiroshima Math. J., 17 (1987), 29-40. | MR 886979 | Zbl 0627.13003
,[12] When is the ring of the integers?, Osaka J. Math., 14 (1977), 155-157. | MR 450255 | Zbl 0358.13006
,