@article{BUMI_1999_8_2A_1S_99_0, author = {Tiziana Durante}, title = {Omogeneizzazione e fenomeno di Lavrentieff per funzionali ad andamento non standard}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {2-A}, year = {1999}, pages = {99-102}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_1999_8_2A_1S_99_0} }
Durante, Tiziana. Omogeneizzazione e fenomeno di Lavrentieff per funzionali ad andamento non standard. Bollettino dell'Unione Matematica Italiana, Tome 2-A (1999) pp. 99-102. http://gdmltest.u-ga.fr/item/BUMI_1999_8_2A_1S_99_0/
[1] On a problem of homogeneization with quickly oscillating constraints on the gradient, J. Math. Anal. Appl., 90 (1982), 219-250. | MR 680876 | Zbl 0499.49007
and ,[2] Un terme étrange venu d'ailleurs, Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, II (1982), 98-138. | MR 652509 | Zbl 0496.35030
and ,[3] Non Homogeneous Neumann's problems in domains with small holes, RAIRO Modèl Math. Anal. Numr., 22 (1988), 561-607. | MR 974289 | Zbl 0669.35028
and ,[4] The Lavrentiejf Phenomenon and Different Process of Homogenization, Comm. Part. Diff. Eq., 17 (1992), 1503-1538. | MR 1187620 | Zbl 0814.35006
and ,[5] 8 (1993). | MR 1201152 | Zbl 0816.49001
, An Introduction to -Convergence, Progress in Nonlinear Differential Equations and Their Applications, BirkhäuserBoston,