Si determinano i gruppi finiti il cui insieme parzialmente ordinato delle classi di coniugio dei sottogruppi è isomorfo a quello di un gruppo abeliano.
@article{BUMI_1998_8_1B_3_691_0, author = {Mario Mainardis}, title = {Finite groups whose poset of conjugacy classes of subgroups is isomorphic to the one of an abelian group}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1-A}, year = {1998}, pages = {691-698}, zbl = {0911.20019}, mrnumber = {1662278}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_3_691_0} }
Mainardis, Mario. Finite groups whose poset of conjugacy classes of subgroups is isomorphic to the one of an abelian group. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 691-698. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_3_691_0/
[1] Posets of subgroups in -groups, Comm. Algebra, 20 (1992), 3043-3054. | MR 1179277 | Zbl 0767.20008
,[2] Posets of subgroups of groups and distributivity, Boll. Un. Mat. Ital. A (7), 9 (1995), 217-223. | MR 1336231 | Zbl 0837.20039
- - ,[3] On the poset of conjugacy classes of subgroups of finite -groups (to appear). | MR 1465108 | Zbl 0886.20013
,[4] A Course in the Theory of Groups, New York-Heidelberg-Berlin, 1982. | MR 648604 | Zbl 0483.20001
,[5] Subgroups Lattices of Groups, Berlin-New York, 1994. | MR 1292462 | Zbl 0843.20003
,[6] Structure of a Group and the Structure of its Lattice of Subgroups, Berlin-Göttingen-Heidelberg, 1956. | MR 83487 | Zbl 0070.25406
,