È ben noto che fra le classi di sistemi ternari di Hall (HTS), gli HTS Abeliani ammettano una risoluzione siccome sono esattamente gli spazi affini finiti d'ordine 3; per questi sistemi una tal risoluzione è fornita dalla relazione di parallelismo. In questa nota viene dimostrato che certe classi di HTS non Abeliani costrutti dai gruppi di Burnside , anche ammettono una risoluzione. Allora, questi esempi di HTS si possono considerare anche come spazi finiti di Sperner e dunque la nota conclude con un discorso d'una domanda posta di Barlotti in [1] riguardo a questi spazi.
@article{BUMI_1998_8_1B_3_639_0,
author = {Martin Oxenham and Rey Casse},
title = {On the resolvability of Hall triple systems},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {1-A},
year = {1998},
pages = {639-649},
zbl = {0918.05019},
mrnumber = {1662345},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_3_639_0}
}
Oxenham, Martin; Casse, Rey. On the resolvability of Hall triple systems. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 639-649. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_3_639_0/
[1] , Some topics in finite geometrical structures, Institute of Statistics Mimeo Series, 439, University of North Carolina (1965). | MR 351858
[2] , Topics about Moufang loops and Hall triple systems, Simon Stevin, 54 no. 2 (1980), 107-124. | MR 572930 | Zbl 0434.05014
[3] , Hall triple systems and related topics, Ann. Discrete Maths., 18 (1983), 55-60. | MR 695797 | Zbl 0503.05008
[4] , Contribution to the theory of loops, Trans. Amer. Math. Soc., 60 (1946), 245-354. | MR 17288 | Zbl 0061.02201
[5] -, Orthogonal resolutions of lines in , Discrete Math., 41 (1982), 17-28. | MR 676858 | Zbl 0509.05013
[6] -, Affine geometries obtained from projective planes and skew resolutions of , Ann. Discrete Math., 18 (1983), 355-376. | MR 695823 | Zbl 0504.05014
[7] -, Hyperplane skew resolutions and their applications, J. Combin. Theory A, 47 (1988), 134-144. | MR 924456 | Zbl 0635.51007
[8] , On groups in which every element has finite order, Amer. Math. Monthly, 96, no. 4 (1989), 297-308. | MR 992077 | Zbl 0822.20042
[9] , On the order of Hall triple systems, J. Combin. Theory A, 29 (1980), 261-262. | MR 583969 | Zbl 0445.05023
[10] , Theory of groups, Chelsea Publishing Company (1959). | MR 414669 | Zbl 0354.20001
[11] , Automorphisms of Steiner triple systems, I.B.M. J. Res. Develop., 4 (1960), 460-471. | MR 123961 | Zbl 0100.01803
[12] , Group theory and block designs, in Proceedings, International Conference on the Theory of Groups, Canberra, Gordon and Breach, New York (1965). | MR 219432 | Zbl 0323.20011
[13] , Incidence axioms for affine geometries, J. Algebra, 21 (1972), 535-547. | MR 317160 | Zbl 0252.50010
[14] , On -covers of and related structures, Doctoral Thesis, University of Adelaide (1991).
[15] -, Hall triple systems and commutative Moufang exponent 3 loops: the case of nilpotence class 2, J. Combin. Theory A, 36 (1984), 129-162. | MR 734973 | Zbl 0527.05018