On the resolvability of Hall triple systems
Oxenham, Martin ; Casse, Rey
Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998), p. 639-649 / Harvested from Biblioteca Digitale Italiana di Matematica

È ben noto che fra le classi di sistemi ternari di Hall (HTS), gli HTS Abeliani ammettano una risoluzione siccome sono esattamente gli spazi affini finiti d'ordine 3; per questi sistemi una tal risoluzione è fornita dalla relazione di parallelismo. In questa nota viene dimostrato che certe classi di HTS non Abeliani costrutti dai gruppi di Burnside B3,r, r3 anche ammettono una risoluzione. Allora, questi esempi di HTS si possono considerare anche come spazi finiti di Sperner e dunque la nota conclude con un discorso d'una domanda posta di Barlotti in [1] riguardo a questi spazi.

Publié le : 1998-10-01
@article{BUMI_1998_8_1B_3_639_0,
     author = {Martin Oxenham and Rey Casse},
     title = {On the resolvability of Hall triple systems},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1-A},
     year = {1998},
     pages = {639-649},
     zbl = {0918.05019},
     mrnumber = {1662345},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_3_639_0}
}
Oxenham, Martin; Casse, Rey. On the resolvability of Hall triple systems. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 639-649. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_3_639_0/

[1] Barlotti, A., Some topics in finite geometrical structures, Institute of Statistics Mimeo Series, 439, University of North Carolina (1965). | MR 351858

[2] Beneteau, L., Topics about Moufang loops and Hall triple systems, Simon Stevin, 54 no. 2 (1980), 107-124. | MR 572930 | Zbl 0434.05014

[3] Beneteau, L., Hall triple systems and related topics, Ann. Discrete Maths., 18 (1983), 55-60. | MR 695797 | Zbl 0503.05008

[4] Bruck, R. H., Contribution to the theory of loops, Trans. Amer. Math. Soc., 60 (1946), 245-354. | MR 17288 | Zbl 0061.02201

[5] Fuji-Hara, R.-Vanstone, S. A., Orthogonal resolutions of lines in AGn,q, Discrete Math., 41 (1982), 17-28. | MR 676858 | Zbl 0509.05013

[6] Fuji-Hara, R.-Vanstone, S. A., Affine geometries obtained from projective planes and skew resolutions of AG3,q, Ann. Discrete Math., 18 (1983), 355-376. | MR 695823 | Zbl 0504.05014

[7] Fuji-Hara, R.-Vanstone, S. A., Hyperplane skew resolutions and their applications, J. Combin. Theory A, 47 (1988), 134-144. | MR 924456 | Zbl 0635.51007

[8] Gupta, N., On groups in which every element has finite order, Amer. Math. Monthly, 96, no. 4 (1989), 297-308. | MR 992077 | Zbl 0822.20042

[9] Hall, J. I., On the order of Hall triple systems, J. Combin. Theory A, 29 (1980), 261-262. | MR 583969 | Zbl 0445.05023

[10] Hall, M. Jr., Theory of groups, Chelsea Publishing Company (1959). | MR 414669 | Zbl 0354.20001

[11] Hall, M. Jr., Automorphisms of Steiner triple systems, I.B.M. J. Res. Develop., 4 (1960), 460-471. | MR 123961 | Zbl 0100.01803

[12] Hall, M. Jr., Group theory and block designs, in Proceedings, International Conference on the Theory of Groups, Canberra, Gordon and Breach, New York (1965). | MR 219432 | Zbl 0323.20011

[13] Hall, M. Jr., Incidence axioms for affine geometries, J. Algebra, 21 (1972), 535-547. | MR 317160 | Zbl 0252.50010

[14] Oxenham, M. G., On n-covers of PG3,q and related structures, Doctoral Thesis, University of Adelaide (1991).

[15] Ray-Chaudhuri, D. K.-Roth, R., Hall triple systems and commutative Moufang exponent 3 loops: the case of nilpotence class 2, J. Combin. Theory A, 36 (1984), 129-162. | MR 734973 | Zbl 0527.05018