Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms
Siboni, S.
Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998), p. 631-638 / Harvested from Biblioteca Digitale Italiana di Matematica

Viene considerata una classe di sistemi dinamici del toro bidimensionale T2 . Tali sistemi presentano la forma di un prodotto skew fra l'endomorfismo Bernoulli Bpx=modpx, 1, pZ-1,0,1, definito sul toro undidimensionale T10,1 ed una traslazione del toro stesso. Si dimostra che gli esponenti di Liapunov e l'entropia di Kolmogorov-Sinai della misura di Haar invariante possono essere calcolati esplicitamente. Viene infine discusso il decadimento delle correlazioni per i caratteri.

Publié le : 1998-10-01
@article{BUMI_1998_8_1B_3_631_0,
     author = {S. Siboni},
     title = {Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1-A},
     year = {1998},
     pages = {631-638},
     zbl = {0913.58035},
     mrnumber = {1662341},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_3_631_0}
}
Siboni, S. Lyapunov exponents, KS-entropy and correlation decay in skew product extensions of Bernoulli endomorphisms. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 631-638. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_3_631_0/

[1] Abramov, L. M.-Rokhlin, V. A., The entropy of a skew product of measure-preserving transformations, Trans. Amer. Math. Soc. (Ser. 2), 48 (1965), 225-65. | Zbl 0156.06102

[2] Bazzani, A.-Siboni, S.-Turchetti, G.-Vaienti, S., A model of modulated diffusion. Part I: analytical results, Jour. Stat. Phys., 76 (1994), 3/4, 929. | Zbl 0839.60073

[3] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470 (1975). | MR 2423393 | Zbl 0308.28010

[4] Mañé, R., Ergodic Theory and Differentiable Dynamics, Springer-Verlag, New York, N.Y. (1987). | MR 889254 | Zbl 0616.28007

[5] Oseledec, V. I., A multiplicative ergodic theorem, Trans. Moscow Math. Soc., 19 (1968), 197-231. | MR 240280 | Zbl 0236.93034

[6] Parry, W., Ergodic properties of a one-parameter family of skew-products, Nonlinearity, 8 (1995), 821-825. | MR 1355044 | Zbl 0836.58028

[7] Parry, W.-Pollicott, M., Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Ed. Astérisque. | MR 1085356 | Zbl 0726.58003

[8] Petersen, K., Ergodic Theory, Cambridge University Press, Cambridge, 1983. | MR 833286 | Zbl 0507.28010

[9] Raghunathan, M. S., A proof of Oseledec's multiplicative ergodic theorem, Jsrael J. Math., 32 (1979), 356-362. | MR 571089 | Zbl 0415.28013

[10] Ruelle, D., An inequality for the entropy of differentiable maps, Bol. Soc. Bras. de Mat., 9 (1978), 83-87. | MR 516310 | Zbl 0432.58013

[11] Ruelle, D., Ergodic theory of differentiable dynamical systems, Publ. Math. IHES, 50 (1979), 275-306. | MR 556581 | Zbl 0426.58014

[12] Siboni, S., Analytical proof of the random phase approximation in a model of modulated diffusion, Jour. Phys. A, 25 (1994), 8171-8183. | MR 1323588 | Zbl 1002.37503

[13] Siboni, S., Decay of correlations in skew endomorphisms with Bernoulli base, Bollettino Unione Matematica Italiana, 11-B (1997), 463-501. | MR 1459291 | Zbl 0884.58061

[14] Siboni, S., Some ergodic properties of a mapping obtained by coupling the translation of the 1-torus with the endomorphism mod2x, 0,1, Nonlinearity, 7 (1994), 1133-1141. | MR 1284683 | Zbl 0809.58039