A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.
@article{BUMI_1998_8_1B_3_541_0, author = {S. V. Bolotin and P. H. Rabinowitz}, title = {A variational construction of chaotic trajectories for a Hamiltonian system on a torus}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1-A}, year = {1998}, pages = {541-570}, zbl = {0957.70020}, mrnumber = {1662325}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_3_541_0} }
Bolotin, S. V.; Rabinowitz, P. H. A variational construction of chaotic trajectories for a Hamiltonian system on a torus. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 541-570. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_3_541_0/
[1] Ordinary differential equations, Encyclopedia of Mathematical Sciences, Vol. 1, Springer-Verlag, 1989.
- - ,[2] Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag (1989). | Zbl 1105.70002
- - ,[3] The discrete Frenkel-Kontorova model and its extensions, I. Exact results for the ground-states, Physica D, 8 (1983), 381-422. | MR 719634
- ,[4] Dynamical Systems, Amer. Math. Soc. Colloq. Publ., IX, New York, 1927.
,[5] Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Matem. Mekhan., 6 (1978), 72-77. | MR 524544 | Zbl 0403.34053
,[6] Libration Motions of Reversible Hamiltonian Systems, Moscow State University, 1981.
,[7] The existence of homoclinic motions, Vestnik Moskov. Univ. Matem. Mekh., 6 (1983), 98-103. | MR 728558 | Zbl 0549.58019
,[8] Homoclinic orbits to invariant tori of Hamiltonian systems, Amer. Math. Soc. Transl., Ser. 2, 168 (1995), 21-90. | MR 1351032 | Zbl 0847.58024
,[9] Libration in systems with many degrees of freedom, J. Appl. Math. Mech. (PMM), 42 (1978), 245-250. | MR 622465 | Zbl 0497.70033
- ,[10] Variational methods for constructing chaotic motions in the rigid body dynamics, Prikl. Matem. i Mekhan., 56 (1992), 230-239. | MR 1186623 | Zbl 0788.70004
,[11] Variational criteria for nonintegrability and chaos in Hamiltonian systems, in: Hamiltonian Systems: Integrability and Chaotic Behavior, NATO ASI Series, 331, Plenum Press (1994), 173-179. | MR 1316675 | Zbl 0951.37029
,[12] Variational criteria for nonintegrability, Russian J. Math. Phys., No 1, 1998. | Zbl 0951.37029
- ,[13] A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. (1996). | MR 1374173 | Zbl 0860.58027
- ,[14] Nonexistence of an additional integral of the problem of a planar heavy double pendulum, Prikl. Matem. i Mekhan., 50 (1986), 168-171. | MR 885592 | Zbl 0626.70006
,[15] Homoclinics and heteroclinics for a class of conservative singular dynamical systems, Preprint, 1996. | Zbl 0887.34044
- ,[16] Pseudo-holomorphic curves and multiplicity of homoclinic orbits, Duke Math. J. (1996). | Zbl 0842.58022
- ,[17] Homoclinic orbits for second order Hamiltonian systems posessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. | MR 1119200 | Zbl 0744.34045
- ,[18] The Shilnikov problem, exponential expansion, strong -lemma, -linearization and homoclinic bifurcation, J. Differ. Equat., 79 (1989), 189-231. | MR 1000687 | Zbl 0674.34040
,[19] Homoclinic orbits in Hamiltonian systems, J. Differ. Equat.21 (1976), 431-438. | MR 442990 | Zbl 0343.58005
,[20] Transversal homoclinic orbits in an integrable system, Amer. J. Math., 100 (1978), 631-642. | MR 494258 | Zbl 0406.58019
,[21] On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems, NoDEA, 1 (1993), 1-49. | MR 1273342 | Zbl 0823.34050
- ,[22] Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., 33 (1932), 719-739. | MR 1503086
,[23] Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, Preprint, 1995. | MR 1419012 | Zbl 0872.34033
- ,[24] Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Preprint, 1996. | MR 1618147 | Zbl 0908.34034
- - ,[25] Entropy and closed geodesics, Ergod. Theor. Dynam. Syst., 2 (1982), 339-367. | MR 721728 | Zbl 0525.58027
,[26] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1995). | MR 1326374 | Zbl 0878.58020
- ,[27] Topological obstructions to the integrability of natural mechanical systems, Dokl. Akad. Nauk. SSSR, 249 (1979), 1299-1302. | MR 556099 | Zbl 0434.70018
,[28] Integrability and nonintegrability in classical mechanics, Uspekhi Mat. Nauk, 38 (1983), 3-67. | MR 693718 | Zbl 0525.70023
,[29] Calculus of variations in large and classical mechanics, Uspekhi Matem. Nauk, 40 (1985), 33-60. | MR 786086 | Zbl 0557.70025
,[30] Topology of domains of possible motion for integrable systems, Matem. Sbornik, 187 (1996), 59-64. | MR 1400352 | Zbl 0871.58043
- ,[31] A fundamental class of geodesics in any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-61. | MR 1501263
,[32] Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349-1386. | MR 1275203 | Zbl 0803.58019
,[33] | MR 669541 | Zbl 0491.58001
- , Geometric Theory of Dynamical Systems, Springer-Verlag, 1982.[34] Homoclinics for a singular Hamiltonian system, to appear in Geometric Analysis and the Calculus of Variations ( , ed.), International Press (1996), 267-296. | MR 1449412 | Zbl 0936.37035
,[35] Heteroclinics for a Hamiltonian system of double pendulum type, to appear in Top. Methods in Nonlin. Analysis, Vol. 9 (1997), 41-76. | MR 1483642 | Zbl 0898.34048
,[36] Existence of infinitely many homoclinics in Hamiltonian systems, Math. Z., 209 (1992), 27-42. | MR 1143210 | Zbl 0725.58017
,[37] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Nonlin., 10 (1993), 561-590. | MR 1249107 | Zbl 0803.58013
,[38] On a Poincaré-Birkhoff problem, Math. USSR Sbornik, 3 (1967), 353-371.
,[39] On Hamiltonian systems with homoclinic curves of a saddle, Dokl. Akad. Nauk SSSR, 304 (1989), 811-814. | MR 988994 | Zbl 0689.58013
- ,