A variational construction of chaotic trajectories for a Hamiltonian system on a torus
Bolotin, S. V. ; Rabinowitz, P. H.
Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998), p. 541-570 / Harvested from Biblioteca Digitale Italiana di Matematica

A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.

Publié le : 1998-10-01
@article{BUMI_1998_8_1B_3_541_0,
     author = {S. V. Bolotin and P. H. Rabinowitz},
     title = {A variational construction of chaotic trajectories for a Hamiltonian system on a torus},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1-A},
     year = {1998},
     pages = {541-570},
     zbl = {0957.70020},
     mrnumber = {1662325},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_3_541_0}
}
Bolotin, S. V.; Rabinowitz, P. H. A variational construction of chaotic trajectories for a Hamiltonian system on a torus. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 541-570. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_3_541_0/

[1] Arnold, V. I.-Il'Yashenko, Y. S.-Anosov, D. V., Ordinary differential equations, Encyclopedia of Mathematical Sciences, Vol. 1, Springer-Verlag, 1989.

[2] Arnold, V. I.-Kozlov, V. V.-Neishtadt, A. I., Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag (1989). | Zbl 1105.70002

[3] Aubry, S.-Ledaeron, P. Y., The discrete Frenkel-Kontorova model and its extensions, I. Exact results for the ground-states, Physica D, 8 (1983), 381-422. | MR 719634

[4] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., IX, New York, 1927.

[5] Bolotin, S. V., Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Matem. Mekhan., 6 (1978), 72-77. | MR 524544 | Zbl 0403.34053

[6] Bolotin, S. V., Libration Motions of Reversible Hamiltonian Systems, Moscow State University, 1981.

[7] Bolotin, S. V., The existence of homoclinic motions, Vestnik Moskov. Univ. Matem. Mekh., 6 (1983), 98-103. | MR 728558 | Zbl 0549.58019

[8] Bolotin, S. V., Homoclinic orbits to invariant tori of Hamiltonian systems, Amer. Math. Soc. Transl., Ser. 2, 168 (1995), 21-90. | MR 1351032 | Zbl 0847.58024

[9] Bolotin, S. V.-Kozlov, V. V., Libration in systems with many degrees of freedom, J. Appl. Math. Mech. (PMM), 42 (1978), 245-250. | MR 622465 | Zbl 0497.70033

[10] Bolotin, S. V., Variational methods for constructing chaotic motions in the rigid body dynamics, Prikl. Matem. i Mekhan., 56 (1992), 230-239. | MR 1186623 | Zbl 0788.70004

[11] Bolotin, S. V., Variational criteria for nonintegrability and chaos in Hamiltonian systems, in: Hamiltonian Systems: Integrability and Chaotic Behavior, NATO ASI Series, 331, Plenum Press (1994), 173-179. | MR 1316675 | Zbl 0951.37029

[12] Bolotin, S. V.-Negrini, P., Variational criteria for nonintegrability, Russian J. Math. Phys., No 1, 1998. | Zbl 0951.37029

[13] Buffoni, B.-Séré, E., A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. (1996). | MR 1374173 | Zbl 0860.58027

[14] Burov, A. A., Nonexistence of an additional integral of the problem of a planar heavy double pendulum, Prikl. Matem. i Mekhan., 50 (1986), 168-171. | MR 885592 | Zbl 0626.70006

[15] Caldiroli, P.-Jeanjean, L., Homoclinics and heteroclinics for a class of conservative singular dynamical systems, Preprint, 1996. | Zbl 0887.34044

[16] Cielebak, K.-Séré, E., Pseudo-holomorphic curves and multiplicity of homoclinic orbits, Duke Math. J. (1996). | Zbl 0842.58022

[17] Coti Zelati, V.-Rabinowitz, P. H., Homoclinic orbits for second order Hamiltonian systems posessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. | MR 1119200 | Zbl 0744.34045

[18] Deng, B., The Shilnikov problem, exponential expansion, strong λ-lemma, C1-linearization and homoclinic bifurcation, J. Differ. Equat., 79 (1989), 189-231. | MR 1000687 | Zbl 0674.34040

[19] Devaney, R. L., Homoclinic orbits in Hamiltonian systems, J. Differ. Equat.21 (1976), 431-438. | MR 442990 | Zbl 0343.58005

[20] Devaney, R. L., Transversal homoclinic orbits in an integrable system, Amer. J. Math., 100 (1978), 631-642. | MR 494258 | Zbl 0406.58019

[21] Giannoni, F.-Rabinowitz, P. H., On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems, NoDEA, 1 (1993), 1-49. | MR 1273342 | Zbl 0823.34050

[22] Hedlund, G. A., Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., 33 (1932), 719-739. | MR 1503086

[23] Kalies, W. D.-Vandervorst, R. C. A. M., Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, Preprint, 1995. | MR 1419012 | Zbl 0872.34033

[24] Kalies, W. D.-Kwapisz, J.-Vandervorst, R. C. A. M., Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Preprint, 1996. | MR 1618147 | Zbl 0908.34034

[25] Katok, A., Entropy and closed geodesics, Ergod. Theor. Dynam. Syst., 2 (1982), 339-367. | MR 721728 | Zbl 0525.58027

[26] Katok, A.-Hasselblatt, B., Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1995). | MR 1326374 | Zbl 0878.58020

[27] Kozlov, V. V., Topological obstructions to the integrability of natural mechanical systems, Dokl. Akad. Nauk. SSSR, 249 (1979), 1299-1302. | MR 556099 | Zbl 0434.70018

[28] Kozlov, V. V., Integrability and nonintegrability in classical mechanics, Uspekhi Mat. Nauk, 38 (1983), 3-67. | MR 693718 | Zbl 0525.70023

[29] Kozlov, V. V., Calculus of variations in large and classical mechanics, Uspekhi Matem. Nauk, 40 (1985), 33-60. | MR 786086 | Zbl 0557.70025

[30] Kozlov, V. V.-Ten, V. V., Topology of domains of possible motion for integrable systems, Matem. Sbornik, 187 (1996), 59-64. | MR 1400352 | Zbl 0871.58043

[31] Morse, M., A fundamental class of geodesics in any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-61. | MR 1501263

[32] Mather, J., Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349-1386. | MR 1275203 | Zbl 0803.58019

[33] Palis, J.-De Melo, W., Geometric Theory of Dynamical Systems, Springer-Verlag, 1982. | MR 669541 | Zbl 0491.58001

[34] Rabinowitz, P. H., Homoclinics for a singular Hamiltonian system, to appear in Geometric Analysis and the Calculus of Variations (J. Jost, ed.), International Press (1996), 267-296. | MR 1449412 | Zbl 0936.37035

[35] Rabinowitz, P. H., Heteroclinics for a Hamiltonian system of double pendulum type, to appear in Top. Methods in Nonlin. Analysis, Vol. 9 (1997), 41-76. | MR 1483642 | Zbl 0898.34048

[36] Seéré, E., Existence of infinitely many homoclinics in Hamiltonian systems, Math. Z., 209 (1992), 27-42. | MR 1143210 | Zbl 0725.58017

[37] Séré, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Nonlin., 10 (1993), 561-590. | MR 1249107 | Zbl 0803.58013

[38] Shilnikov, L. P., On a Poincaré-Birkhoff problem, Math. USSR Sbornik, 3 (1967), 353-371.

[39] Turayev, D. V.-Shilnikov, L. P., On Hamiltonian systems with homoclinic curves of a saddle, Dokl. Akad. Nauk SSSR, 304 (1989), 811-814. | MR 988994 | Zbl 0689.58013