Si dà una nuova e completa dimostrazione del risultato cruciale del metodo di Ruppert che consente di stabilire in maniera effettiva quando una superficie abeliana è isomorfa o isogena a un prodotto di curve ellittiche.
@article{BUMI_1998_8_1B_2_407_0,
author = {Marina Rosanna Marchisio},
title = {Abelian surfaces and products of elliptic curves},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {1-A},
year = {1998},
pages = {407-427},
zbl = {0938.14025},
mrnumber = {1638147},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_2_407_0}
}
Marchisio, Marina Rosanna. Abelian surfaces and products of elliptic curves. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 407-427. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_2_407_0/
[B] -, Teoria dei gruppi, Collana Schaum (1983).
[Bo] , On binary sextics with linear transformations onto themselves, Am. J. Math., 10 (1888), 47-70. | MR 1505464
[G] -, Principles of Algebraic Geometry, John Wiley & Sons (1978). | Zbl 0408.14001
[H] , Algebraic Geometry, a first course, Springer-Verlag (1992). | MR 1182558 | Zbl 0779.14001
[K] , Complex Abelian Varieties and Theta Functions, Springer-Verlag (1991). | MR 1109495 | Zbl 0752.14040
[LB] -, Complex Abelian Varieties, Springer-Verlag (1992). | MR 1217487 | Zbl 0779.14012
[M] , Elements of Algebraic Topology, The Benjiamin Cumming Publishing Company (1984). | MR 755006 | Zbl 0673.55001
[R] , When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Zeit., 203 (1990), 293-299. | MR 1033438 | Zbl 0712.14028
[S] , Produkte Abelscher Varietäten und Moduln über Ordnungen, J. Reine Angew. Math., 429 (1992), 115-123. | MR 1173119 | Zbl 0744.14030
[Sh] -, Singular abelian surfaces and binary quadratic forms, in Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes in Math., vol. 412, 255-287, Springer-Verlag (1974). | MR 382289 | Zbl 0302.14011