Si dà una nuova e completa dimostrazione del risultato cruciale del metodo di Ruppert che consente di stabilire in maniera effettiva quando una superficie abeliana è isomorfa o isogena a un prodotto di curve ellittiche.
@article{BUMI_1998_8_1B_2_407_0, author = {Marina Rosanna Marchisio}, title = {Abelian surfaces and products of elliptic curves}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1-A}, year = {1998}, pages = {407-427}, zbl = {0938.14025}, mrnumber = {1638147}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_2_407_0} }
Marchisio, Marina Rosanna. Abelian surfaces and products of elliptic curves. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 407-427. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_2_407_0/
[B] Teoria dei gruppi, Collana Schaum (1983).
- ,[Bo] On binary sextics with linear transformations onto themselves, Am. J. Math., 10 (1888), 47-70. | MR 1505464
,[G] | Zbl 0408.14001
- , Principles of Algebraic Geometry, John Wiley & Sons (1978).[H] | MR 1182558 | Zbl 0779.14001
, Algebraic Geometry, a first course, Springer-Verlag (1992).[K] | MR 1109495 | Zbl 0752.14040
, Complex Abelian Varieties and Theta Functions, Springer-Verlag (1991).[LB] | MR 1217487 | Zbl 0779.14012
- , Complex Abelian Varieties, Springer-Verlag (1992).[M] | MR 755006 | Zbl 0673.55001
, Elements of Algebraic Topology, The Benjiamin Cumming Publishing Company (1984).[R] When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Zeit., 203 (1990), 293-299. | MR 1033438 | Zbl 0712.14028
,[S] Produkte Abelscher Varietäten und Moduln über Ordnungen, J. Reine Angew. Math., 429 (1992), 115-123. | MR 1173119 | Zbl 0744.14030
,[Sh] Singular abelian surfaces and binary quadratic forms, in Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes in Math., vol. 412, 255-287, Springer-Verlag (1974). | MR 382289 | Zbl 0302.14011
- ,