Numerical methods for phase transition problems
Verdi, Claudio
Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998), p. 83-108 / Harvested from Biblioteca Digitale Italiana di Matematica

Nel presente articolo si illustrano alcuni dei principali metodi numerici per l'approssimazione di modelli matematici legati ai fenomeni di transizione di fase. Per semplificare e contenere l'esposizione ci siamo limitati a discutere con un certo dettaglio i metodi più recenti, presentandoli nel caso di problemi modello, quali il classico problema di Stefan e l'evoluzione di superficie per curvatura media, solo accennando alle applicazioni e modelli più generali.

Publié le : 1998-02-01
@article{BUMI_1998_8_1B_1_83_0,
     author = {Claudio Verdi},
     title = {Numerical methods for phase transition problems},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1-A},
     year = {1998},
     pages = {83-108},
     zbl = {0896.65064},
     mrnumber = {1619039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_1_83_0}
}
Verdi, Claudio. Numerical methods for phase transition problems. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 83-108. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_1_83_0/

[1] Allen, S. M.-Cahn, J. W., A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsing, Acta Metall. Mater., 27 (1979), 1085-1095.

[2] Almgren, F.-Taylor, J. E.-Wang, L., Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438. | MR 1205983 | Zbl 0783.35002

[3] Almgren, R., Variational algorithms and pattern formation in dendritic solidification, J. Comput. Phys., 106 (1993), 337-354. | MR 1218734 | Zbl 0787.65095

[4] Altschuler, S.-Angenent, S. B.-Giga, Y., Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal., 5 (1995), 293-358. | MR 1360824 | Zbl 0847.58072

[5] Athanasopoulos, I.-Caffarelli, L.-Salsa, S., Degenerate phase transition problems of parabolic type. Smoothness of the front, to appear. | Zbl 0924.35197

[6] Barles, G.-Soner, H. M.-Souganidis, P. E., Front propagation and phase field theory, SIAM J. Control Optim., 31 (1993), 439-469. | MR 1205984 | Zbl 0785.35049

[7] Bellettini, G.-Paolini, M., Two examples of fattening for the curvature flow with a driving force, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl., 5 (1994), 229-236. | MR 1298266 | Zbl 0826.35051

[8] Bellettini, G.-Paolini, M., Quasi-optimal error estimates for the mean curvature flow with a forcing term, Diff. Integ. Eq., 8 (1995), 735-752. | MR 1306590 | Zbl 0820.49019

[9] Bellettini, G.-Paolini, M., Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL, Mem. Mat. (5), 19 (1995), 43-67. | MR 1387549 | Zbl 0944.53039

[10] Bellettini, G.-Paolini, M., Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25 (1996), 537-566. | MR 1416006 | Zbl 0873.53011

[11] Bellettini, G.-Paolini, M.-Verdi, C., Front-tracking and variational methods to approximate interfaces with prescribed mean curvature, in Numerical Methods for Free Boundary Problems (P. Neittaanmäki ed.), Birkhäuser, Basel (1991), pp. 83-92. | MR 1118855 | Zbl 0754.65065

[12] Bellettini, G.-Paolini, M.-Verdi, C., Convex approximations of functionals with curvature, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl., 2 (1991), 297-306. | MR 1152636 | Zbl 0754.65066

[13] Blowey, J. F.-Elliott, C. M., A phase-field model with a double obstacle potential, in Motion by Mean Curvature and Related Topics (G. Buttazzo and A. Visintin eds.), Gruyter, New York, (1994), pp. 1-22. | MR 1277388 | Zbl 0809.35168

[14] Brezzi, F.-Caffarelli, L. A., Convergence of the discrete free boundaries for finite element approximations, RAIRO Modél. Math. Anal. Numér., 17 (1983), 385-395. | MR 713766 | Zbl 0547.65081

[15] Bänsch, E., Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Engrg., 3 (1991), 181-191. | MR 1141298 | Zbl 0744.65074

[16] Caginalp, G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. | MR 816623 | Zbl 0608.35080

[17] Chen, X.-Reitich, F., Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 164 (1992), 350-362. | MR 1151039 | Zbl 0761.35113

[18] Chen, Y. G.-Giga, Y.-Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Diff. Geom., 33 (1991), 749-786. | MR 1100211 | Zbl 0696.35087

[19] Chen, Z.-Nochetto, R. H., A posteriori error estimation for the continuous casting problem, in preparation.

[20] Chen, Z.-Nochetto, R. H., A posteriori error estimation and adaptivity for phase relaxation models, in preparation.

[21] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[22] Clément, H., Approximation by finite element functions using local regularization, RAIRO Modél. Math. Anal. Numér., 9 (1975), 77-84. | MR 400739 | Zbl 0368.65008

[23] Crandall, M. G.-Ishii, H.-Lions, P. L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67. | MR 1118699 | Zbl 0755.35015

[24] Dal Maso, G., An Introduction to G-Convergence, Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[25] Dupont, T., Mesh modification for evolution equations, Math. Comp., 29 (1982), 85-107. | MR 658215 | Zbl 0493.65044

[26] Dziuk, G., An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), 603-611. | MR 1083523 | Zbl 0714.65092

[27] Dziuk, G., Convergence of a semi-discrete scheme for the curvature shortening flow, Math. Models Methods Appl. Sci., 4 (1994), 589-606. | MR 1291140 | Zbl 0811.65112

[28] Dziuk, G., Convergence of a semi-discrete scheme for the anisotropic curvature shortening flow, to appear.

[29] Elliott, C. M., Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7 (1987), 61-71. | MR 967835 | Zbl 0638.65088

[30] Elliott, C. M.-Paolini, M.-Schätzle, R., Interface estimates for the fully anisotropic Allen-Cahn equation and anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 6 (1996), 1103-1118. | MR 1428147 | Zbl 0873.35039

[31] Elliott, C. M.-Schätzle, R., The limit of the anisotropic double-obstacle Allen-Cahn equation, Proc. Roy. Soc. London Ser. A, to appear. | MR 1424223 | Zbl 0865.35073

[32] Elliott, C. M.-Schätzle, R., The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the non-smooth case, SIAM J. Math. Anal., to appear. | MR 1434036 | Zbl 0870.35128

[33] Eriksson, K.-Johnson, C., Adaptive finite element methods for parabolic problems I: a linear model problem, SIAM J. Numer. Anal., 28 (1991), 43-77. | MR 1083324 | Zbl 0732.65093

[34] Evans, L. C.-Soner, H. M.-Souganidis, P. E., Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123. | MR 1177477 | Zbl 0801.35045

[35] Evans, L. C.-Spruck, J., Motion of level sets by mean curvature. I, J. Diff. Geom., 33 (1991), 635-681. | MR 1100206 | Zbl 0726.53029

[36] Fierro, F., Numerical approximation for the mean curvature flow with nucleation using implicit time-stepping: an adaptive algorithm, Calcolo, to appear. | MR 1740750 | Zbl 0927.65144

[37] Fierro, F.-Goglione, R.-Paolini, M., Numerical simulations of mean curvature flow in presence of a nonconvex anisotropy, Math. Models Methods Appl. Sci., to appear. | MR 1634826 | Zbl 0946.58014

[38] Fife, P. C.-Penrose, O., Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. | MR 1060043 | Zbl 0709.76001

[39] Giga, Y.-Goto, S.-Ishii, H.-Sato, M. H., Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J., 40 (1991), 443-470. | MR 1119185 | Zbl 0836.35009

[40] Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom., 20 (1994), 237-266. | MR 772132 | Zbl 0556.53001

[41] Jerome, J. W.-Rose, M. E., Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39 (1982), 377-414. | MR 669635 | Zbl 0505.65060

[42] Jiang, X.-Nochetto, R. H., A finite element method for a phase relaxation model. Part I: quasi-uniform mesh, SIAM J. Numer. Anal., to appear. | MR 1619875 | Zbl 0972.65067

[43] Jiang, X.-Nochetto, R. H.-Verdi, C., A P 12P0 finite element method for a model of polymer crystallization, Comput. Meth. Appl. Mech. Engrg., 125 (1995), 303-317. | MR 1352100 | Zbl 0949.82025

[44] Jiang, X.-Nochetto, R. H.-Verdi, C., A P 12P1 finite element method for a phase relaxation model. Part II: adaptively refined meshes, SIAM J. Numer. Anal., to appear. | MR 1688994 | Zbl 0934.65105

[45] Kimura, M., Numerical analysis for moving boundary problems using the boundary tracking method, Japan J. Indust. Appl. Math., to appear. | MR 1475140 | Zbl 0892.76065

[46] Klein, O. W., Existence and approximation results for phase-field systems of Penrose-Fife type and Stefan problems, Ph.D. Thesis, Humboldt-Universität, Berlin (1997).

[47] Kornhuber, R., Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems, TeubnerStuttgart (1997). | MR 1469497 | Zbl 0879.65041

[48] Ladyzenskaja, O. A.-Solonnikov, V.-Ural'Ceva, N., Linear and Quasilinear Equations of Parabolic Type, vol. TMM 23, AMS, Providence (1968). | MR 241822 | Zbl 0174.15403

[49] Luckhaus, S., Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, European J. Appl. Math., 1 (1990), 101-111. | MR 1117346 | Zbl 0734.35159

[50] Luckhaus, S.-Sturzenhecker, T., Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271. | MR 1386964 | Zbl 0821.35003

[51] Magenes, E.-Nochetto, R. H.-Verdi, C., Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, RAIRO Modél. Math. Anal. Numér., 21 (1987), 655-678. | MR 921832 | Zbl 0635.65123

[52] Nochetto, R. H., Error estimates for multidimensional singular parabolic problems, Japan J. Indust. Appl. Math., 4 (1987), 111-138. | MR 899207 | Zbl 0657.65132

[53] Nochetto, R. H., A stable extrapolation method for multidimensional degenerate parabolic problems, Math. Comp., 53 (1989), 455-470. | MR 982372 | Zbl 0675.65112

[54] Nochetto, R. H., Finite element methods for parabolic free boundary problems, in Advances in Numerical Analysis, vol. I: Nonlinear Partial Differential Equations and Dynamical Systems (W. Light ed.), Oxford University Press, Oxford (1991), pp. 34-88. | MR 1138471 | Zbl 0733.65089

[55] Nochetto, R. H.-Paolini, M.-Verdi, C., An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part I: stability and error estimates. Supplement, Math. Comp., 57 (1991), 73-108, S1-S11. | MR 1079028 | Zbl 0733.65087

[56] Nochetto, R. H.-Paolini, M.-Verdi, C., An adaptive finite elements method for twophase Stefan problems in two space dimensions. Part II: implementation and numerical experiments, SIAM J. Sci. Statist. Comput., 12 (1991), 1207-1244. | MR 1114983 | Zbl 0733.65088

[57] Nochetto, R. H.-Paolini, M.-Verdi, C., A fully discrete adaptive nonlinear Chernoff formula, SIAM J. Numer. Anal., 30 (1993), 991-1014. | MR 1231324 | Zbl 0805.65135

[58] Nochetto, R. H.-Paolini, M.-Verdi, C., Sharp error analysis for curvature dependent evolving fronts, Math. Models Methods Appl. Sci., 3 (1993), 711-723. | MR 1245632 | Zbl 0802.65124

[59] Nochetto, R. H.-Paolini, M.-Verdi, C., Optimal interface error estimates for the mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), 193-212. | MR 1288364 | Zbl 0886.35079

[60] Nochetto, R. H.-Paolini, M.-Verdi, C., Double obstacle formulation with variable relaxation parameter for smooth geometric front evolutions: asymptotic interface error estimates, Asymptotic Anal., 10 (1995), 173-198. | MR 1324387 | Zbl 0852.35060

[61] Nochetto, R. H.-Paolini, M.-Verdi, C., A dynamic mesh method for curvature dependent evolving interfaces, J. Comput. Phys., 123 (1996), 296-310. | MR 1372375 | Zbl 0851.65067

[62] Nochetto, R. H.-Paolini, M.-Verdi, C., Numerical Analysis of Geometric Motion of Fronts, CRM, Montreal, in preparation.

[63] Nochetto, R. H.-Schmidt, A.-Verdi, C., A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp., to appear. | MR 1648399 | Zbl 0942.65111

[64] Nochetto, R. H.-Schmidt, A.-Verdi, C., Mesh and time step modification for degenerate parabolic problems, in preparation.

[65] Nochetto, R. H.-Schmidt, A.-Verdi, C., Adaptive algorithm and simulations for Stefan problems in two and three dimensions, in preparation.

[66] Nochetto, R. H.-Schmidt, A.-Verdi, C., Adapting meshes and time-steps for phase change problems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl., to appear. | MR 1631617 | Zbl 0910.65106

[67] Nochetto, R. H.-Verdi, C., Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25 (1988), 784-814. | MR 954786 | Zbl 0655.65131

[68] Nochetto, R. H.-Verdi, C., An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation, Math. Comp., 51 (1988), 27-53. | MR 942142 | Zbl 0657.65131

[69] Nochetto, R. H.-Verdi, C., Convergence of double obstacle problems to the generalized geometric motion of fronts, SIAM J. Math. Anal., 26 (1995), 1514-1526. | MR 1356457 | Zbl 0839.35008

[70] Nochetto, R. H.-Verdi, C., Approximating curvature driven interfaces with applications to shape recovery, in Curvature Flows and Related Topics (A. Damlamian et al., eds.), Gakkötosho, Tokyo (1995), pp. 159-177. | MR 1365307 | Zbl 0844.76007

[71] Nochetto, R. H.-Verdi, C., Combined effect of explicit time-stepping and quadrature for curvature driven flows, Numer. Math., 74 (1996), 105-136 | MR 1400218 | Zbl 0859.65066

[72] Nochetto, R. H.-Verdi, C., Convergence past singularities for a fully discrete approximation of curvature driven interfaces, SIAM J. Numer. Anal., 34 (1997), 490-512. | MR 1442924 | Zbl 0876.35053

[73] Osher, S.-Sethian, J. A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. | MR 965860 | Zbl 0659.65132

[74] Paolini, M., An efficient algorithm for computing anisotropic evolution by mean curvature, in Curvature Flows and Related Topics (A. Damlamian et al. eds.), Gakkötosho, Tokyo (1995), pp. 119-213. | MR 1365309 | Zbl 0838.73079

[75] Paolini, M.-Verdi, C., Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter, Asymptotic Anal., 5 (1992), 553-574. | MR 1169358 | Zbl 0757.65078

[76] Rulla, J.-Walkington, N. J., Optimal rates of convergence for degenerate parabolic problems in two dimensions, SIAM J. Numer. Anal., 33 (1996), 56-67. | MR 1377243 | Zbl 0856.65102

[77] Schmidt, A., Computation of three dimensional dendrites with finite elements, J. Comput. Phys., 125 (1996), 293-312. | Zbl 0844.65096

[78] Sethian, J. A., Level Set Methods, Cambridge University Press, Cambridge (1996). | MR 1409367 | Zbl 0859.76004

[79] Verdi, C., Optimal error estimates for an approximation of degenerate parabolic problems, Numer. Funct. Anal. Optim., 9 (1987), 657-670. | MR 895990 | Zbl 0598.65091

[80] Verdi, C., Numerical aspects of parabolic free boundary and hysteresis problems, in Phase Transition and Hysteresis (A. Visintin ed.), Lectures Notes in Mathematics, 1584, Springer-Verlag, Berlin (1994), pp. 213-284. | MR 1321834 | Zbl 0819.35155

[81] Verdi, C.-Visintin, A., Error estimates for a semiexplicit numerical scheme for Stefan-type problems, Numer. Math., 52 (1988), 165-185. | MR 923709 | Zbl 0617.65125

[82] Visintin, A., Stefan problem with phase relaxation, IMA J. Appl. Math., 34 (1985), 225-245. | MR 804824 | Zbl 0585.35053

[83] Visintin, A., Models of Phase Transitions, Birkhäuser, Boston (1996). | MR 1423808 | Zbl 0882.35004

[84] Visintin, A., Nucleation and mean curvature flow, Comm. Partial Differential Equations, to appear. | MR 1608492 | Zbl 0901.53045

[85] Visintin, A., Introduction to the models of phase transitions, this volume, p. 1. | MR 1619027 | Zbl 0903.35097