Stefan problems with a concentrated capacity
Magenes, Enrico
Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998), p. 71-81 / Harvested from Biblioteca Digitale Italiana di Matematica

Vengono brevemente studiati i problemi di Stefan su «capacità concentrate»,seguendo l'approccio recentemente introdotto di G. Savaré e A. Visintin.

Publié le : 1998-02-01
@article{BUMI_1998_8_1B_1_71_0,
     author = {Enrico Magenes},
     title = {Stefan problems with a concentrated capacity},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1-A},
     year = {1998},
     pages = {71-81},
     zbl = {0904.35103},
     mrnumber = {1619035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_1_71_0}
}
Magenes, Enrico. Stefan problems with a concentrated capacity. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 71-81. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_1_71_0/

[1] Andreucci, D., Existence and uniqueness of solutions to a concentrated capacity problem with change of phase, Europ. J. Appl. Math., 1 (1990), 330-351. | MR 1117356 | Zbl 0734.35161

[2] Brezis, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Proc. Symp. by the Mathematics Research Center, Madison, Wisconsin, Academic Press, New York (1971), pp. 101-156. | MR 394323 | Zbl 0278.47033

[3] Brezis, H., Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert, North-Holland; Amsterdam (1973). | Zbl 0252.47055

[4] Delfour, M. C.-Zolésio, J. P., Shape analysis via oriented distance functions, J. Funct. Anal., 86 (1989), 129-201. | MR 1279299 | Zbl 0814.49032

[5] Fasano, A.-Primicerio, M.-Rubinstein, L., A model problem for heat conduction with a free boundary in a concentrated capacity, J. Inst. Math. Appl., 26 (1980), 327-347. | MR 605396 | Zbl 0456.35093

[6] Gilbarg, D.-Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983). | MR 737190 | Zbl 0562.35001

[7] Lions, J. L.-Magenes, E., Non Homogeneous Boundary Value Problems and Applications I, II, Springer-Verlag, Berlin (1972). | Zbl 0223.35039

[8] Magenes, E., On a Stefan problem on a boundary of a domain, in M. Miranda (ed.), Partial Differential Equations and Related Subjects, Longman Scient. Techn. (1992), pp. 209-226. | MR 1190942 | Zbl 0803.35170

[9] Magenes, E., Some new results on a Stefan problem in a concentrated capacity, Rend. Acc. Lincei, Mat. Appl., s. 9, v. 3 (1992), 23-34. | MR 1159996 | Zbl 0767.35110

[10] Magenes, E., The Stefan problem in a concentrated capacity, in: P. E. Ricci (ed.), Atti Simp. Int. «Problemi attuali dell'Analisi e della Fisica Matematica»; Dip. di Matematica, Univ. «La Sapienza», Roma (1993), pp. 155-182. | Zbl 0803.35171

[11] Magenes, E., Regularity and approximation properties for the solution of a Stefan problem in a concentrated capacity, Proc. Int. Workshop on Variational Methods, Nonlinear Analysis and Differential Equations, E.C.I.G., Genova (1994), pp. 88-106.

[12] Magenese, E., On a Stefan problem in a concentrated capacity, in: P. Marcellini, G. Talenti, E. Vesentini (eds.), P.D.E. and Applications, Marcel Dekker, Inc. (1996), pp. 237-253. | MR 1371595 | Zbl 0864.35127

[13] Magenes, E., Stefan problems in a concentrated capacity, Adv. Math. Comp. Appl., Proc. AMCA95, N.C.C. Pubbl., Novosibirsk (1996), pp. 82-90. | MR 1701426 | Zbl 0864.35127

[14] Mosco, U., Convergence of convex sets and of solutions of variational inequalitites, Adv. Math., 3 (1969), pp. 510-585. | MR 298508 | Zbl 0192.49101

[15] Mosco, U., On the continuity of the Young-Fenchel transformation, J. Math. Anal. Appl., 35 (1971), pp. 518-535. | MR 283586 | Zbl 0253.46086

[16] Rubinstein, L., Temperature Fields in Oil Layers, Nedra, Moscow (1972). | MR 503025

[17] Rubinstein, L., The Stefan problem: Comments on its present state, J. Inst. Math. Appl., 24 (1979), 259-277. | MR 550476 | Zbl 0434.35086

[18] Rubinstein, L.-Geiman, H.-Shachaf, M., Heat transfer with a free boundary moving within a concentrated capacity, I.M.A. J. Appl. Math., 28 (1982), 131-147. | MR 662144 | Zbl 0489.35077

[19] Savaré, G.-Visintin, A., Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase, Rend. Acc. Lincei, Mat. Appl., s. 9, v. 8 (1997), 49-89. | MR 1484545 | Zbl 0888.35139

[20] Shillor, M., Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capcity, Proc. Roy. Soc. Edinburgh, Sect. A, 100 (1985), 271-280. | MR 807706 | Zbl 0591.35086

[21] Tichonov, A. N., On the boundary conditions containing derivatives of the order greater than the order of the equation, Mat. Sbornik, 26 (67) (1950), 35-56. | MR 33439

[22] Visinitin, A., Models of Phase Transitions, Progress in Nonlinear Diff. Equat. and their Appl., Birkhäuser (1996). | MR 1423808 | Zbl 0882.35004

[23] Visintin, A., Introduction to the models of phase transitions, this issue, p. 1. | MR 1619027 | Zbl 0903.35097