Vengono brevemente studiati i problemi di Stefan su «capacità concentrate»,seguendo l'approccio recentemente introdotto di G. Savaré e A. Visintin.
@article{BUMI_1998_8_1B_1_71_0, author = {Enrico Magenes}, title = {Stefan problems with a concentrated capacity}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1-A}, year = {1998}, pages = {71-81}, zbl = {0904.35103}, mrnumber = {1619035}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_1_71_0} }
Magenes, Enrico. Stefan problems with a concentrated capacity. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 71-81. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_1_71_0/
[1] Existence and uniqueness of solutions to a concentrated capacity problem with change of phase, Europ. J. Appl. Math., 1 (1990), 330-351. | MR 1117356 | Zbl 0734.35161
,[2] Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Proc. Symp. by the Mathematics Research Center, Madison, Wisconsin, Academic Press, New York (1971), pp. 101-156. | MR 394323 | Zbl 0278.47033
,[3] | Zbl 0252.47055
, Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert, North-Holland; Amsterdam (1973).[4] Shape analysis via oriented distance functions, J. Funct. Anal., 86 (1989), 129-201. | MR 1279299 | Zbl 0814.49032
- ,[5] A model problem for heat conduction with a free boundary in a concentrated capacity, J. Inst. Math. Appl., 26 (1980), 327-347. | MR 605396 | Zbl 0456.35093
- - ,[6] | MR 737190 | Zbl 0562.35001
- , Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin (1983).[7] | Zbl 0223.35039
- , Non Homogeneous Boundary Value Problems and Applications I, II, Springer-Verlag, Berlin (1972).[8] On a Stefan problem on a boundary of a domain, in (ed.), Partial Differential Equations and Related Subjects, Longman Scient. Techn. (1992), pp. 209-226. | MR 1190942 | Zbl 0803.35170
,[9] Some new results on a Stefan problem in a concentrated capacity, Rend. Acc. Lincei, Mat. Appl., s. 9, v. 3 (1992), 23-34. | MR 1159996 | Zbl 0767.35110
,[10] The Stefan problem in a concentrated capacity, in: (ed.), Atti Simp. Int. «Problemi attuali dell'Analisi e della Fisica Matematica»; Dip. di Matematica, Univ. «La Sapienza», Roma (1993), pp. 155-182. | Zbl 0803.35171
,[11] Regularity and approximation properties for the solution of a Stefan problem in a concentrated capacity, Proc. Int. Workshop on Variational Methods, Nonlinear Analysis and Differential Equations, E.C.I.G., Genova (1994), pp. 88-106.
,[12] On a Stefan problem in a concentrated capacity, in: , , (eds.), P.D.E. and Applications, Marcel Dekker, Inc. (1996), pp. 237-253. | MR 1371595 | Zbl 0864.35127
,[13] Stefan problems in a concentrated capacity, Adv. Math. Comp. Appl., Proc. AMCA95, N.C.C. Pubbl., Novosibirsk (1996), pp. 82-90. | MR 1701426 | Zbl 0864.35127
,[14] Convergence of convex sets and of solutions of variational inequalitites, Adv. Math., 3 (1969), pp. 510-585. | MR 298508 | Zbl 0192.49101
,[15] On the continuity of the Young-Fenchel transformation, J. Math. Anal. Appl., 35 (1971), pp. 518-535. | MR 283586 | Zbl 0253.46086
,[16] | MR 503025
, Temperature Fields in Oil Layers, Nedra, Moscow (1972).[17] The Stefan problem: Comments on its present state, J. Inst. Math. Appl., 24 (1979), 259-277. | MR 550476 | Zbl 0434.35086
,[18] Heat transfer with a free boundary moving within a concentrated capacity, I.M.A. J. Appl. Math., 28 (1982), 131-147. | MR 662144 | Zbl 0489.35077
- - ,[19] Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase, Rend. Acc. Lincei, Mat. Appl., s. 9, v. 8 (1997), 49-89. | MR 1484545 | Zbl 0888.35139
- ,[20] Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capcity, Proc. Roy. Soc. Edinburgh, Sect. A, 100 (1985), 271-280. | MR 807706 | Zbl 0591.35086
,[21] On the boundary conditions containing derivatives of the order greater than the order of the equation, Mat. Sbornik, 26 (67) (1950), 35-56. | MR 33439
,[22] | MR 1423808 | Zbl 0882.35004
, Models of Phase Transitions, Progress in Nonlinear Diff. Equat. and their Appl., Birkhäuser (1996).[23] Introduction to the models of phase transitions, this issue, p. 1. | MR 1619027 | Zbl 0903.35097
,