Le transizioni di fase si presentano in svariati processi fisici: un esempio tipico è la transizione solido-liquido. Il classico modello matematico, noto come problema di Stefan, tiene conto solo dello scambio del calore latente e della diffusione termica nelle fasi. Si tratta di un problema di frontiera libera, poiché l'evoluzione dell'interfaccia solido liquido è una delle incognite. In questo articolo si rivedono le formulazioni forte e debole di tale problema, e quindi si considerano alcune generalizzazioni fisicamente motivate. In particolare si presenta un modello su scala mesoscopica per la tensione superficiale, il superraffreddamento e la nucleazione.
@article{BUMI_1998_8_1B_1_1_0, author = {A. Visintin}, title = {Introduction to the models of phase transitions}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1-A}, year = {1998}, pages = {1-47}, zbl = {0903.35097}, mrnumber = {1619027}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_1_1_0} }
Visintin, A. Introduction to the models of phase transitions. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 1-47. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_1_1_0/
[1] Homogeneous Nucleation Theory, Academic Press, New York (1974).
,[2]
- , Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC (1993).[3] A microscopic theory for antiphase motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085-1095.
- ,[4] Existence and Regularity Almost Everywhere of Elliptic Variational Problems with Constraints, Memoirs A.M.S., 165 (1976). | MR 420406 | Zbl 0327.49043
,[5] Curvature-driven flows: a variational approach, S.I.A.M. J. Contr. Optimiz., 31 (1993), 387-437. | MR 1205983 | Zbl 0783.35002
- - ,[6] Mathematical existence of crystal growth with Gibbs-Thomson curvature effects, J. Geom. Anal. (to appear). | MR 1758583 | Zbl 0981.74041
- ,[7] Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144. | MR 618549 | Zbl 0449.35105
- ,[8] A mathematical model of dynamics of non-isothermal phase separation, Physica D, 59 (1992), 389-416 | MR 1192751 | Zbl 0763.58031
- ,[9] Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434 | MR 1394964 | Zbl 0853.35049
- - ,[10] Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). | Zbl 0891.35164
- - ,[11] Degenerate phase transition problems of parabolic type: smoothness of the front, Preprint, Princeton (1996). | Zbl 0924.35197
- - ,[12] A finite difference scheme for melting problems, J. Inst. Math. Appl., 13 (1974), 353-366. | MR 351295
,[13] Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. | MR 408443 | Zbl 0258.76069
,[14] | MR 745619 | Zbl 0551.49007
- , Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester (1983).[15] Remark on a flame propagation model, Rapport I.N.R.I.A., 464 (1985).
,[16] Equations d'évolution dans un espace de Banach quelconque et applications, Thèse, Orsay (1972).
,[17] A numerical method for solving the problem , R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. | MR 555381 | Zbl 0426.65052
- - ,[18] Some properties of the nonlinear semigroup for the problem , Nonlinear Analysis, T.M.A., 8 (1984), 909-939. | MR 753767 | Zbl 0557.35129
- ,[19] Mathematical formulation and numerical solution of an alloy solidification problem, in: Free Boundary Problems: Theory and Applications ( - , eds.), Pitman, Boston (1983), pp. 237-247. | Zbl 0506.65043
- ,[20] On free boundary problems for the Laplace equation, Advanced Study Seminars, 1 (1957), 248-263. | Zbl 0099.08302
,[21] The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy, Euro J. App. Math., 2 (1991), 233-280. | MR 1123143 | Zbl 0797.35172
- ,[22] Stefan models for eddy currents in steel, in: Free Boundary Problems: Theory and Applications ( - , eds.), Pitman, Boston (1983), pp. 349-364. | Zbl 0506.65044
,[23] Free boundaries in induction heating, Control Cybernetics, 14 (1985), 69-96. | Zbl 0615.35086
,[24] Mixed methods for a vectorial Stefan problem, in: Free Boundary Problems: Theory and Applications ( - , eds.), Longman, Harlow (1990), pp. 25-37. | MR 1077030 | Zbl 0724.65118
,[25] | MR 1616583 | Zbl 0787.65090
, Électromagnétisme, en vue de la modélisation, Springer, Paris (1993).[26] Homogenization of the Stefan problem and application to composite magnetic media, I.M.A. J. Appl. Math., 27 (1981), 319-334. | MR 633807 | Zbl 0468.35053
- ,[27]
- - , Free Boundary Problems: Theory and Applications, Pitman, Boston (1985).[28] A mixed FEM-BIEM method to solve eddy currents problems, I.E.E.E. Trans. Magn.MAG-18 (1982), 431-435.
- ,[29] | MR 485012 | Zbl 0386.53047
, The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton (1978).[30] On some degenerate nonlinear parabolic equations, in: Nonlinear Functional Analysis ( , ed.). Proc. Symp. Pure Math., XVIII. A.M.S., Providence (1970), pp. 28-38. | MR 273468 | Zbl 0231.47034
,[31] | MR 348562 | Zbl 0252.47055
, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam (1973).[32]
, The Growth of Crystals from Liquids, North-Holland, Amsterdam (1973).[33] | MR 1411908 | Zbl 0951.74002
- , Hysteresis and Phase Transitions, Springer, Heidelberg (1996).[34] | MR 1277387 | Zbl 0794.00019
- (eds.), Motion by Mean Curvature and Related Topics, De Gruyter, Berlin (1994).[35] The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. | MR 454350 | Zbl 0386.35046
,[36] Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. | MR 466965 | Zbl 0393.35064
,[37] Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. | MR 683353 | Zbl 0516.35080
- ,[38] Continuity of the temperature in the Stefan prob- lem, Indiana Univ. Math. J., 28 (1979), 53-70. | MR 523623 | Zbl 0406.35032
- ,[39] An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. | MR 816623 | Zbl 0608.35080
,[40] Stefan and Hele-Shaw type models as asymptotic limits of phase field equations,, Pys. Rev. A, 39 (1989), 5887-5896. | MR 998924 | Zbl 1027.80505
,[41] The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits, I.M.A. J. Appl. Math., 44 (1990), 77-94. | MR 1044256 | Zbl 0712.35114
,[42] Phase field and sharp-interface alloy models, Phys. Rev. E, 48 (1993), 1897-1909 | MR 1377919
- ,[43] Theory of crystal growth and interface motion in crystalline materials, Acta Metall., 8 (1960), 554-562.
,[44] On spinodal decomposition, Acta Metall., 9 (1961), 795-801.
,[45] Free energy of a nonuniform system. I. Interfacial free energy. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 28 (1957), 258-267; 31 (1959), 688-699.
- ,[46] Surface motion by surface diffusion, Acta Metall. Mater., 42 (1994), 1045-1063.
- ,[47] 23, Addison Wesley, Menlo Park (1984). | MR 747979 | Zbl 0567.35001
, The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol.[48] The steady state Stefan problem with convection, with mixed temperature and non-linear heat flux boundary conditions, in: Free Boundary Problems ( , ed.), Istituto di Alta Matematica, Roma (1980), pp. 231-266. | MR 630724 | Zbl 0493.76088
- ,[49] On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. | MR 225013 | Zbl 0167.10504
- ,[50] | MR 1216352
- (eds.), Emerging Applications in Free Boundary Problems, Longman, Harlow (1993).[51] | MR 1216392
- (eds.) Free Boundary Problems Involving Solids, Longman, Harlow (1993).[52] | MR 1216373
- (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow (1993).[53]
, Principles of Solidification, Wiley, New York (1964).[54] Local existence and uniqueness of solutions of the Stefan prob- lem with surface tension and kinetic undercooling, J. Math. Anal. Appl., 154 (1992), 350-362. | MR 1151039 | Zbl 0761.35113
- ,[55] Uniqueness and existence of viscosity solutions of generalized solutions of mean curvature flow equation, J. Diff. Geom., 33 (1991), 749-786. | MR 1100211 | Zbl 0696.35087
- - ,[56]
, The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London (1975).[57] Weak solution to hyperbolic Stefan problems with memory, No.D.E.A. (to appear). | MR 1433315 | Zbl 0878.35121
- - ,[58] Global smooth solution to the standard phase-field model with memory, Adv. Diff. Eqs. (to appear). | MR 1441852 | Zbl 1023.45500
- - ,[59] | MR 1679579 | Zbl 0927.35022
- - , Asymptotic analysis of a phase field model with memory for vanishing time relaxation, Preprint, Dipartimento di Matematica dell'Università di Torino (1995).[60] Hyperbolic phase change problems in heat conduction with memory, Proc. Roy. Soc. Edingurgh A, 123 (1993), 571-592. | MR 1226618 | Zbl 0788.35151
- ,[61] On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type, Ann. Mat. Pura Appl., 169 (1995), 269-289. | MR 1378478 | Zbl 0852.35030
- ,[62] Stefan problems and the Penrose-Fife phase field model, Adv. Math. Sci. Appl. (to appear). | MR 1476282 | Zbl 0892.35158
- ,[63] | MR 776227 | Zbl 0547.35001
, Free and Moving Boundary Problems, Clarendon Press, Oxford (1984).[64] Proceedings of an I.M.A. Conference on Crystal Growth, I.M.A. J. of Appl. Math., 35 (1985) 115-264.
- ,[65] Numerical solution of alloy solidification problem revisited, in: Free Boundary Problems: Theory and Applications ( - - , eds.), Pitman, Boston (1985), pp. 122-131. | Zbl 0593.35100
,[66] On the numerical solution of an alloy solidification problem, Int. J. Heat Mass Transfer, 22 (1979), 941-947.
- ,[67] A Bibliography of Free Boundary Problems, M.R.C. Rep. No. 1793, Math. Res. Cent., Univ. of Wisconsin (1977).
,[68] Some results on the multi-phase Stefan problem, Comm. in P.D.E.s, 2 (1977), 1017-1044. | MR 487015 | Zbl 0399.35054
,[69] Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. | Zbl 0483.35004
,[70] Asymptotic behavior of solutions to a multi-phase Stefan problem, in: Free Boundary Problems: Theory and Applications ( and , eds.), Longman, Harlow (1990), pp. 811-817. | Zbl 0619.35053
,[71] Asymptotic behavior of solutions to a multi-phase Stefan problem, Japan J. Appl. Math., 3 (1986), 15-36. | MR 899211 | Zbl 0619.35053
- ,[72] Periodicity and almost periodicity of the solutions to a multi-phase Stefan problem, Nonlinear Analysis, T.M.A., 12 (1988), 921-934. | MR 960635 | Zbl 0673.35103
- ,[73] | MR 1365295
- - (eds.), Curvature Flows and Related Topics, Gakkotosho, Tokyo (1995).[74] On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. | MR 810813 | Zbl 0604.35080
,[75] | MR 1342322
- - - (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1995).[76] Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. | MR 677695 | Zbl 0458.35098
,[77] Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. | MR 663969 | Zbl 0503.35018
,[78] The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. A.M.S., 282 (1984), 183-204. | MR 728709 | Zbl 0621.35102
- ,[79] Conduction-convection problems with change of phase, J. Diff. Eqs., 62 (1986), 129-185. | MR 833415 | Zbl 0593.35085
- ,[80] On the singular equation , Arch. Rat. Mech. Anal., 132 (1995), 247-309. | MR 1365831 | Zbl 0849.35060
- ,[81] | MR 1181197 | Zbl 0917.60103
- - , Wulff Construction. A Global Shape from Local Interaction, A.M.S., Providence (1992).[82] A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. | MR 556152 | Zbl 0426.35060
,[83]
, Rates of Phase Transformations, Academic Press, Orlando (1985).[84] Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. | MR 328346 | Zbl 0258.35037
,[85] The solution of a two-phase Stefan by a variational inequality, in: Moving Boundary Problems in Heat Flow and Diffusion ( - , eds.), Clarendon Press, Oxford (1975), pp. 173-181.
,[86] On a variational inequality formulation of an electrochemical machining moving boundary problem and its approximation by the finite element method, J. Inst. Maths. Applics., 25 (1980), 121-131. | MR 571974 | Zbl 0428.49003
,[87] The Cahn-Hilliard model for the kinetics of phase separation, in: Mathematical Models for Phase Change Problems ( , ed.), Birkhäuser, Basel (1989), pp. 35-73. | MR 1038064 | Zbl 0692.73003
,[88] A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg, 88A (1981), 93-107. | MR 611303 | Zbl 0455.76043
- ,[89] | MR 650455 | Zbl 0476.35080
- , Weak and Variational Methods for Moving Boundary Problems, Pitman, Boston (1982).[90] On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal., 96 (1986), 339-357. | MR 855754 | Zbl 0624.35048
- ,[91] A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. | Zbl 0043.41101
,[92] Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45 (1992), 1097-1123. | MR 1177477 | Zbl 0801.35045
- - ,[93] Motion of level sets by mean curvature I, J. Diff. Geom., 33 (1991), 635-681. | MR 1100206 | Zbl 0726.53029
- ,[94] Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario (1987). | MR 914370 | Zbl 0642.35081
,[95] General free boundary problems for the heat equation, J. Math. Anal. Appl., I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. | Zbl 0355.35037
- ,[96] Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. | MR 552335 | Zbl 0421.35080
- ,[97] | MR 714939 | Zbl 0504.00012
- (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston (1983).[98] Freezing in porous media: a review of mathematical models, Proc. German-Italian Symp. ( - , eds.), Teubner (1984), pp. 288-311. | MR 788551 | Zbl 0578.76102
- ,[99] Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. | MR 784301 | Zbl 0578.35087
- ,[100] Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. | MR 805431 | Zbl 0591.35088
- ,[101] A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. | MR 819213 | Zbl 0594.35092
- ,[102] Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. | MR 477460 | Zbl 0378.35008
- - ,[103] Numerical methods for alloy solidification, in: Moving Boundary Problems ( - - , eds.) Academic Press, New York (1978), pp. 109-128. | MR 484050 | Zbl 0444.65081
,[104] Numerical simulation of free boundary problems using phase field methods, in: The Mathematics of Finite Element and Applications ( , ed.), Academic Press, London (1982). | Zbl 0505.65061
,[105] Phase field methods for free boundary problems, in: Free Boundary Problems, Theory and Applications ( - , eds.), Pitman, Boston (1983), pp. 580-589. | Zbl 0518.35086
,[106]
, Solidification Processing, McGraw-Hill, New York (1973).[107] Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, in: Proc. Conf. Computational Methods in Nonlinear Mechanics ( , ed.), University of Texas, Austin (1974), pp. 341-349. | MR 398299 | Zbl 0316.76063
,[108] Dissipation dans le changement de phase. Surfusion. Changement de phase irréversible, C.R. Acad. Sci. Paris, Série II, 301 (1985), 1265-1268. | MR 880589 | Zbl 0582.73007
- ,[109] Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. | Zbl 0199.42301
,[110] | MR 181836 | Zbl 0144.34903
, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964).[111] The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. | MR 227625 | Zbl 0162.41903
,[112] One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. | MR 227626 | Zbl 0162.42001
,[113] Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. | MR 407452 | Zbl 0329.35034
,[114] | MR 679313 | Zbl 0564.49002
, Variational Principles and Free Boundary Problems, Wiley, New York (1982).[115] | MR 968664 | Zbl 0731.00004
(ed.), Mathematics in Industrial Problems, Parts 1 - 6, Springer, New York (1988-1993).[116] A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. | MR 385326 | Zbl 0334.49002
- ,[117] | MR 1320769 | Zbl 0782.00065
- (eds.), Variational and Free Boundary Problems, Springer, New York (1993).[118] An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50 (1983), 1225-1229. | MR 726325 | Zbl 0534.52008
,[119] Spherically symmetrical Stefan problem with the Gibbs-Thomdon law at the moving boundary, Euro. J. Appl. Math., 7 (1996), 249-275. | MR 1401170 | Zbl 0879.35163
- ,[120] Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. | MR 1134749 | Zbl 0756.35119
- ,[121] The heat equation shrinks embedded plane curves to points, J. Diff. Geom., 26 (1987), 285-314. | MR 906392 | Zbl 0667.53001
,[122] On a theory of phase transitions with interfacial energy, Arch. Rational Mech. Anal., 87 (1985), 187-212. | MR 768066
,[123] On the two-phase Stefan problem with interfacial energy and entropy, Arch. Rat. Mech. Anal., 96 (1986), 199-241. | MR 855304 | Zbl 0654.73008
,[124] Toward a nonequilibrium thermodynamics of two phase materials, Arch. Rat. Mech. Anal., 100 (1988), 275-312. | MR 918798 | Zbl 0673.73007
,[125] Multiphase thermomechanics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rational Mech. Anal., 104 (1988), 195-221. | MR 1017288 | Zbl 0723.73016
,[126] On diffusion in two-phase systems: the sharp interface versus the transition layer, in: P.D.E.s and Continuum Models of Phase Transitions ( - - , eds.), Springer, Heidelberg (1989), pp. 99-112. | MR 1036065 | Zbl 0991.80500
,[127] On thermomechanical laws for the motion of a phase interface, Zeit. Angew. Math. Phys., 42 (1991), 370-388. | MR 1115197 | Zbl 0754.73020
,[128] | MR 1402243 | Zbl 0787.73004
, Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford (1993).[129] The dynamics of solid-solid phase transitions. 1. Coherent interfaces, Arch. Rational Mech. Anal., 123 (1993), 305-335. | MR 1233641 | Zbl 0788.73017
,[130] Thermodynamics and supercritical Stefan equations with nucleations, Quart. Appl. Math., LII (1994), 133-155. | MR 1262324 | Zbl 0809.35171
,[131] | MR 1226911 | Zbl 0745.00047
- (eds.), On the Evolution of Phase Boundaries, Springer, New York (1991).[132] Some remarks on the Stefan problem with surface structure, Quart. Appl. Math., L (1992), 291-303. | MR 1162277 | Zbl 0763.35110
- ,[133] Classical solution of the Stefan problem, Tohoku Math., 33 (1981), 297-335. | MR 633045 | Zbl 0571.35109
,[134] | MR 895137 | Zbl 0698.35002
, One-Dimensional Stefan Problem: An Introduction, Longman, Harlow (1987).[135] Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479.
- ,[136] | Zbl 0703.00015
- (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow (1990).[137] | MR 1111018 | Zbl 0702.00021
- (eds.), Free Boundary Value Problems, Birkhäuser, Boston (1990).[138] A mathematical model for the phase transitions in eutectoid carbon steel, I.M.A. J. Appl. Math., 54 (1995), 31-57. | MR 1319948 | Zbl 0830.65126
,[139] Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237-266. | MR 772132 | Zbl 0556.53001
,[140] Elliptic regularization and partial regularity for motion by mean curvature, Memoirs A.M.S., 520 (1994). | MR 1196160 | Zbl 0798.35066
,[141] The two-phase Stefan problem. I, II, Chinese Math.4 (1963), 686-702; 5 (1964), 36-53. | Zbl 0149.31601
,[142] On the Stefan problem, Math. Sbornik, 53 (1961) 489-514 (Russian). | Zbl 0102.09301
,[143] Systems of nonlinear P.D.E.s arising from dynamical phase transitions, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena ( , ed.), Springer, Heidelberg (1994), pp. 39-86. | MR 1321831 | Zbl 0824.35144
,[144] Viscosity approach to modelling non-isothermal diffusive phase separation, Japan J. Indust. Appl. Math., 13 (1996), 135-16. | MR 1377464 | Zbl 0865.35062
- ,[145] Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. | MR 440187 | Zbl 0352.35023
- ,[146] The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. | MR 480348 | Zbl 0391.35060
- ,[147] | MR 567696 | Zbl 0457.35001
- , An Introduction to Variational Inequalities and their Applications, Academic Press, New York (1980).[148] Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. | Zbl 0070.43803
,[149]
- , Fundamentals of Solidification, Trans Tech, Aedermannsdorf (1989).[150] Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256.
- ,[151] Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., 52 (1980), 1-28.
,[152] | MR 259693 | Zbl 0189.40603
, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).[153] Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. | MR 1117346 | Zbl 0734.35159
,[154] Solidification of alloys and the Gibbs-Thomson law, Preprint (1994).
,[155] The Gibbs-Thompson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal., 107 (1989), 71-83. | MR 1000224 | Zbl 0681.49012
- ,[156] Implicit time discretization for the mean curvature flow equation, Calc. Var., 3 (1995), 253-271. | MR 1386964 | Zbl 0821.35003
- ,[157] Phase transition in a multicomponent system, Manuscripta Math., 43 (1983), 261-288. | MR 707047 | Zbl 0525.35012
- ,[158]
(ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma (1980).[159] Problemi di Stefan bifase in più variabili spaziali, Le Matematiche, 36 (1981), 65-108. | MR 736797 | Zbl 0545.35096
,[160] Su di una impostazione parametrica del problema dei capillari, Ann. Univ. Ferrara, 20 (1974), 21-31. | MR 388973 | Zbl 0365.76035
- ,[161]
, Principles of Electrochemical Machining, Chapman and Hall, London (1974).[162] On the derivation of the quasi-steady model in electrochemical machining, J. Inst. Maths. Applics., 13 (1974), 13-21.
- ,[163] On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. | Zbl 0498.35087
,[164] On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. USSR.-Sbornik, 40 (1981), 157-178. | Zbl 0467.35053
,[165] An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. | MR 620870 | Zbl 0545.35097
,[166] | MR 1154310 | Zbl 0751.35052
, The Stefan Problem, De Gruyter, Berlin (1992) (Russian edition: Nauka, Novosibirsk (1986)).[167] The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution, Euro J. Appl. Math., 5 (1994), 1-20. | MR 1270785 | Zbl 0812.35165
,[168] Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré. Anal. Nonlin., 4 (1987), 487-512. | MR 921549 | Zbl 0642.49009
,[169] Gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., 98 (1987), 123-142. | MR 866718 | Zbl 0616.76004
,[170] Morphological stability of a particle growing by diffusion and heat flow, J. Appl. Phys., 34 (1963), 323-329.
- ,[171] Stability of a planar interface during solidification of a dilute alloy, J. Appl. Phys., 35 (1964), 441-451.
- ,[172] Stefan-like problems, in: Free Boundary Problems: Theory and Applications ( - , eds.), Pitman, Boston (1983), pp. 321-347. | MR 714922 | Zbl 0512.35075
,[173] | MR 1462964
(ed.), Free Boundary Problems: Theory and Applications, Gakkotosho, Tokyo (to appear).[174] Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 278-298. | MR 763473
- ,[175] | Zbl 0295.76064
- (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford (1975).[176] A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. | MR 125341 | Zbl 0131.09202
,[177] Stefan-like problems, Meccanica, 28 (1993), 129-143. | Zbl 0786.76091
- - ,[178] Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12-49. | MR 965860 | Zbl 0659.65132
- ,[179]
(ed.), Crystal Growth, Pergamon Press, Oxford (1975).[180] Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. | MR 1060043 | Zbl 0709.76001
- ,[181] On the relation between the standard phase-field model and a «thermodynamically consistent» phase-field model, Physica D, 69 (1993), 107-113. | MR 1245658 | Zbl 0799.76084
- ,[182] The Stefan problem with surface tension as a limit of phase field model, Diff. Eqs., 29 (1993), 395-404. | MR 1236334 | Zbl 0802.35165
- ,[183] | Zbl 0115.23101
, Thermodynamics of Irreversible Processes, Wiley-Interscience, New York (1967).[184] Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univ. Politecn. Torino, 32 (1973-74), 183-206. | MR 477466 | Zbl 0307.76048
,[185] Problemi di diffusione a frontiera libera, Boll. Un. Mat. Ital., 18-A (1981), 11-68. | Zbl 0468.35082
,[186] Mushy regions in phase-change problems, in: Applied Functional Analysis ( - , eds.), Lang, Frankfurt (1983), pp. 251-269. | MR 685609 | Zbl 0518.35087
,[187] Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem, Soviet Dokl. Acad. Sci., 43 (1991), 274-278. | Zbl 0782.35087
,[188] Hele-Shaw flow with a free boundary produced by the injections of a fluid into a narrow channel, J. Fluid. Mech., 56 (1972), 609-618. | Zbl 0256.76024
,[189] Some Hele-Shaw flow with time-dependent free boundaries, J. Fluid. Mech., 102 (1981), 263-278. | MR 612095 | Zbl 0451.76015
,[190] An evolutionary continuous casting problem of Stefan type, Quart. Appl. Math., XLIV (1986), 109-131. | MR 840448 | Zbl 0618.35068
,[191] | MR 880369 | Zbl 0606.73017
, Obstacle Problems in Mathematical Physics, North-Holland, Amsterdam (1987).[192] The variational inequality approach to the one-phase Stefan problem, Acta Appl. Math., 8 (1987), 1-35. | MR 871691 | Zbl 0653.35083
,[193] | MR 1038061 | Zbl 0676.00021
, Mathematical Models for Phase Change Problems, Birkhäuser, Basel (1989).[194] Variational methods in the Stefan problem, in: Modelling and Analysis of Phase Transition and Hysteresis Phenomena ( , ed.). Springer, Heidelberg (1994), pp. 147-212. | MR 1321833 | Zbl 0819.35154
,[195] | MR 1347688 | Zbl 0827.73001
, Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore (1993).[196] On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. | MR 22979 | Zbl 0032.13101
,[197] | MR 222436 | Zbl 0434.35086
, The Stefan Problem, A.M.S., Providence (1971) (Russian edition: Zvaigzne, Riga (1967)).[198] On mathematical modelling of growth of an individual monocomponent crystal from melt in a non-uniform temperature field, Control and Cybernetics, 12 (1983), 5-18. | MR 720596 | Zbl 0512.93043
,[199] On mathematical models of solid-liquid zones in two phase mono- component system and in binary alloys, in: Free Boundary Problems: Theory and Applications ( - , eds.), Pitman, Boston (1983), pp. 275-282. | Zbl 0509.76095
,[200] Mathematical modelling of growth of an individual monocomponent crystal from its melt in a non-homogeneous temperature field, in: Free Boundary Problems: Theory and Applications ( - - , eds.), Pitman, Boston (1985), pp. 166-178. | MR 863169 | Zbl 0593.35105
,[201] Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. | MR 605212 | Zbl 0456.35096
- - ,[202] The penetration of fluid into a porous medium or Hele-Shaw cell, Proc. Roy. Soc. London Ser. A, 245 (1958), 312-329. | MR 97227 | Zbl 0086.41603
- ,[203] A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Diff. Eqs., 20 (1976), 266-269. | MR 390499 | Zbl 0314.35044
,[204] Esistenza di una soluzione in problemi analoghi a quello di Stefan, Riv. Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. | Zbl 0048.43406
,[205] Curvature and evolution of fronts, Comm. Math. Phys., 101 (1985), 487-499. | MR 815197 | Zbl 0619.76087
,[206] Mathematical formulation of the Stefan problem, Int. J. Eng. Sci., 20 (1982), 909-912. | MR 660566 | Zbl 0506.76103
,[207] A hyperbolic Stefan problem, Quart. Appl. Math., XLV (1987), 769-781. | MR 917025 | Zbl 0649.35086
- ,[208]
, Metastable Liquids, Wiley, Chichester (1974).[209] Convergence of the phase-field equation to the Mullins-Sekerka problem with kinetic undercooling, Arch. Rational Mech. Anal., 131 (1995), 139-197. | MR 1346368 | Zbl 0829.73010
,[210] Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions, J. Math. Anal. Appl., 176 (1993), 200-223. | MR 1222165 | Zbl 0804.35063
- ,[211] Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442.
,[212] Analysis of coupled heat-mass transport in freezing porous soils, Surveys for Mathematics in Industry, to appear. | Zbl 0901.76084
,[213] Una revisión sobre problemas de frontera móvil y libre para la ecuación del calor. El problema de Stefan, Math. Notae, 29 (1981/82), 147-241. | Zbl 0847.00034
,[214] | Zbl 0774.35091
, The Two-Phase Stefan Problem and Some Related Conduction Problems, S.B.M.A.C., Gramado (1987).[215] A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Prog. Naz. M.P.I. Ital., Firenze (1988). | MR 1007840 | Zbl 0694.35221
,[216] Mean curvature and weighted mean curvature, Acta Metall. Mater., 40 (1992), 1475-1485.
,[217] Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat. Phys., 77 (1994), 183-197. | MR 1300532 | Zbl 0844.35044
- ,[218] Phase Changes, Solid State Phys., 3 (1956), 225-306.
,[219]
, The Molten State of Matter, Wiley, Chichester (1978).[220] A mathematical model of the austenite-pearlite transformation in plain steel based on the Scheil additivity rule, Acta Metall., 35 (1987), 2711-2717.
- ,[221] Stefan problem with phase relaxation, I.M.A. J. Appl. Math., 34 (1985), 225-245. | MR 804824 | Zbl 0585.35053
,[222] Study of the eddy-current problem taking account of Hall's effect, App. Anal., 19 (1985), 217-226. | MR 799985 | Zbl 0563.35077
,[223] A new model for supercooling and superheating effects, I.M.A. J. Appl. Math., 36 (1986), 141-157. | MR 984464 | Zbl 0619.35116
,[224] Stefan problem with a kinetic condition at the free boundary, Ann. Mat. Pura Appl., 146 (1987), 97-122. | MR 916689 | Zbl 0643.35115
,[225] Coupled thermal and electromagnetic evolution in a ferromagnetic body, Z. Angew. Math. Mech., 67 (1987), 409-417. | MR 919395 | Zbl 0628.73118
,[226] Supercooling and superheating effects in heterogeneous systems, Quart. Appl. Math., XLV (1987), 239-263. | MR 895096 | Zbl 0636.35089
,[227] Mathematical models of solid-solid phase transformations in steel, I.M.A. J. Appl. Math., 39 (1987), 143-157. | MR 983739 | Zbl 0652.73050
,[228] The Stefan problem with surface tension, in: Mathematical Models of Phase Change Problems ( , ed.). Birkhäuser, Basel (1989), pp. 191-213. | MR 1038070 | Zbl 0692.73002
,[229] Remarks on the Stefan problem with surface tension, in: Boundary Value Problems for Partial Differential Equations and Applications ( - , eds.). Dunod, Paris (1993). | MR 1260478 | Zbl 0803.35173
,[230]
, Modelling and Analysis of Phase Transition and Hysteresis Phenomena, Springer, Heidelberg (1994).[231] Two-scale Stefan problem with surface tension, in: Nonlinear Analysis and Applications ( - - , eds.), Gakkotosho, Tokyo (1996), pp. 405-424. | MR 1422948 | Zbl 0868.35144
,[232] Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. | MR 1460449 | Zbl 0935.80005
,[233] | MR 1423808 | Zbl 0882.35004
, Models of Phase Transitions, Birkhäuser, Boston (1996).[234] Nucleation and mean curvature flow, Comm. in P.D.E.s (to appear). | MR 1608492 | Zbl 0901.53045
,[235] Stefan Problem with nucleation and mean curvature flow, in preparation.
,[236] Motion by mean curvature flow and nucleation, C. R. Acad. Sc. Paris, Serie I, 325 (1997), 55-60. | MR 1461397 | Zbl 0883.35136
,[237] Progress with simple binary alloy solidification problems, in: Free Boundary Problems: Theory and Applications ( - , eds.), Pitman, Boston 1983, pp. 306-320. | MR 719507 | Zbl 0514.76105
- - ,[238] | MR 466887 | Zbl 0432.00011
- - (eds.), Moving Boundary Problems, Academic Press, New York (1978).[239] A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory (1979).
- - ,[240]
, The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge (1973).[241] Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. | MR 654859 | Zbl 0506.35053
,