In questa nota dimostriamo stime asintotiche ottimali per le soluzioni deboli non negative del problema al contorno è il Laplaciano di Kohn sul gruppo di Heisenberg , è un aperto non limitato e è la dimensione omogenea di . Utilizziamo successivamente le stime ottenute per dimostrare un teorema di non esistenza per (*) nel caso in cui sia un semispazio di con bordo parallelo al centro del gruppo.
@article{BUMI_1998_8_1B_1_139_0, author = {E. Lanconelli and F. Uguzzoni}, title = {Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {1-A}, year = {1998}, pages = {139-168}, zbl = {0902.22006}, mrnumber = {1618972}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_1_139_0} }
Lanconelli, E.; Uguzzoni, F. Asymptotic behavior and non-existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 139-168. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_1_139_0/
[BC] On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. | MR 929280 | Zbl 0649.35033
- ,[BeC] Existence of positive solutions of the equation in , J. Funct. Anal., 88 (1990), 90-117. | MR 1033915 | Zbl 0705.35042
- ,[BCC] Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | MR 1450950 | Zbl 0876.35033
- - ,[BK] Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58 (1979), 137-151. | MR 539217 | Zbl 0408.35025
- ,[BN] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. | MR 709644 | Zbl 0541.35029
- ,[B] Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris, Serie A, 286 (1978), 139-142. | MR 467176 | Zbl 0368.46037
,[C] Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian, Ann. Mat. Pura Appl., 169 (1995), 375-392. | MR 1378482 | Zbl 0848.35040
,[CGL] Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., 115 (1993), 699-734. | MR 1221840 | Zbl 0795.35018
- - ,[Cy] Wiener's test for the Brownian motion on the Heisenberg group, Colloquium Math., 39 (1978), 367-373. | MR 522380 | Zbl 0409.60075
,[EL] Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburgh, 93A (1982), 1-14. | MR 688279 | Zbl 0506.35035
- ,[Fe] 153, Springer, New York (1969). | MR 257325 | Zbl 0176.00801
, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften,[F] A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376. | MR 315267 | Zbl 0256.35020
,[FS] Estimates for the complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. | MR 367477 | Zbl 0293.35012
- ,[GL1] Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier Grenoble, 40 (1990), 313-356. | MR 1070830 | Zbl 0694.22003
- ,[GL2] Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J., 41 (1992), 71-98. | MR 1160903 | Zbl 0793.35037
- ,[GT] 224, Springer-Verlag, New York (1977). | MR 473443 | Zbl 0361.35003
- , Elliptic partial differential equations of second order, Die Grundlehren der mathematischen Wissenschaften,[J] The Dirichlet problem for the Kohn Laplacian on the Heisenberg group I, J. Funct. Anal., 43 (1981), 97-142. | MR 639800 | Zbl 0493.58021
,[JL1] Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989), 303-343. | MR 982177 | Zbl 0671.32016
- ,[JL2] Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13. | MR 924699 | Zbl 0634.32016
- ,[KN] Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. | MR 181815 | Zbl 0125.33302
- ,[L] The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana, 1 (1985), n. 1, 145-201, n. 2, 45-121. | MR 850686 | Zbl 0704.49005
,[T] Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Serie IV, 110 (1976), 353-372. | MR 463908 | Zbl 0353.46018
,[U] A Liouville-type theorem on halfspaces for the Kohn Laplacian, Proc. Amer. Math. Soc., to appear. | MR 1458268 | Zbl 0907.31006
,