On multivortex solutions in Chern-Simons gauge theory
Struwe, Michael ; Tarantello, Gabriella
Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998), p. 109-121 / Harvested from Biblioteca Digitale Italiana di Matematica

Motivati dall'analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs, si studia l'equazione -Δu=λeuΩeudx-1Ω,uH1Ω dove Ω=R2/Z2 é il toro piatto bidimensionale. In contrasto con l'analogo problema di Dirichlet, si dimostra che per λ8π,4π2 l'equazione ammette una soluzione non banale. Tale soluzione cattura il carattere bidimensionale dell'equazione, nel senso che, per tali valori di λ, l'equazione non può ammettere soluzioni (periodiche) non banali dipendenti da una sola variabile (vedi [10]).

Publié le : 1998-02-01
@article{BUMI_1998_8_1B_1_109_0,
     author = {Michael Struwe and Gabriella Tarantello},
     title = {On multivortex solutions in Chern-Simons gauge theory},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1-A},
     year = {1998},
     pages = {109-121},
     zbl = {0912.58046},
     mrnumber = {1619043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1B_1_109_0}
}
Struwe, Michael; Tarantello, Gabriella. On multivortex solutions in Chern-Simons gauge theory. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 109-121. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1B_1_109_0/

[1] Brezis, H.-Merle, F., Uniform estimates and blow-up behavior for solutions of -Δu=Vxeu in two dimensions, Comm. P.D.E., 16 (1991), 1223-1253. | MR 1132783 | Zbl 0746.35006

[2] Caglioti, E.-Lions, P. L.-Marchioro, C.-Pulvirenti, M., A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525. | MR 1145596 | Zbl 0745.76001

[3] Caglioti, E.-Lions, P. L.-Marchioro, C.-Pulvirenti, M., A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part II, Comm. Math. Phys., 174 (1995), 229-260. | MR 1362165 | Zbl 0840.76002

[4] Dunne, G., Self-dual Chern Simons Theories, Lecture Notes in Physics, New Series M, 36, Springer, New York (1996). | Zbl 0834.58001

[5] Hong, J.-Kim, Y.-Pac, P. Y., Multivortex solutions of the Abelian Chern Simons theory, Phys. Rev. Lett., 64 (1990), 2230-2233. | MR 1050529 | Zbl 1014.58500

[6] Jackiw, R.-Weinberg, E. J., Selfdual Chern Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237. | MR 1050530 | Zbl 1050.81595

[7] Kiessling, M. K. H., Statistical Mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., 46 (1993), 27-56. | MR 1193342 | Zbl 0811.76002

[8] Li, Y.-Shafrir, I., Blow-up analysis for solutions of -Δu=Veu in dimension two, Ind. Univ. Math. J., 43 (1994), 1255-1270. | MR 1322618 | Zbl 0842.35011

[9] Moser, J., A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1091. | MR 301504 | Zbl 0213.13001

[10] Ricciardi, T.-Tarantello, G., in preparation.

[11] Struwe, M., The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988), 19-64. | MR 926524 | Zbl 0646.53005

[12] Struwe, M., Critical points of embeddings of H1,2 into Orlicz spaces, Ann. Inst. H. Poincaré, Analyse Nonlin., 5 (1988), 425-464. | MR 970849 | Zbl 0664.35022

[13] Suzuki, T., Global analysis for two dimensional elliptic eigenvalue problems with exponential nonlinearities, Ann. Inst. H. Poincaré, Analyse Nonlin., 9 (1992), 367-398. | MR 1186683 | Zbl 0785.35045

[14] Tarantello, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (8) (1996), 3769-3796. | MR 1400816 | Zbl 0863.58081

[15] Taubes, C. H., Arbitrary N-vortex solutions to the first order Ginzburg-Landau equation, Comm. Math. Phys., 72 (1980), 277-292. | MR 573986 | Zbl 0451.35101