Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana
Ferrari, Fausto
Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998), p. 113-116 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 1998-04-01
@article{BUMI_1998_8_1A_1S_113_0,
     author = {Fausto Ferrari},
     title = {Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera h\"olderiana},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {1-A},
     year = {1998},
     pages = {113-116},
     zbl = {Zbl 0932.31006},
     mrnumber = {1664143},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_1998_8_1A_1S_113_0}
}
Ferrari, Fausto. Teoremi di confronto di tipo Harnack per funzioni armoniche in domini con frontiera hölderiana. Bollettino dell'Unione Matematica Italiana, Tome 1-A (1998) pp. 113-116. http://gdmltest.u-ga.fr/item/BUMI_1998_8_1A_1S_113_0/

[1] Ancona, A., Principe de Harnack à la frontier et theèorem de Fatou pour un operatore elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier (Grenoble), 28 (1978), 169-213. | MR 513885 | Zbl 0377.31001

[2] Banuelos, R., Bass, R. e Burdzy, K., Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195-200. | MR 1131398 | Zbl 0755.35027

[3] Bass, R. e Burdzy, K., A boundary Harnack principle for twisted Hölder domains, Ann. of Math., 134 (1991), 253-276. | MR 1127476 | Zbl 0747.31008

[4] Caffarelli, L., A Harnack inequality approach to the regularity of free boundaries, Part I, Lipschitz free boundaries are C1,α, Revista Math. Iberoamericana, 3 (1987), 139-162. | MR 990856 | Zbl 0676.35085

[5] Caffarelli, L., A Harnack inequality approach to the regularity of free boundaries, Part II, Flat free boundaries are Lipschitz, CPAM, 42 (1989), 55-78. | MR 973745 | Zbl 0676.35086

[6] Caffarelli, L., Fabes, E., Mortola, S. e Salsa, S., Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., 30 (1981), 621-640. | MR 620271 | Zbl 0512.35038

[7] Dahlberg, B., Estimates of harmonic measure, Arch. Rat. Mech. Anal., 65, (1977), 275-288. | MR 466593 | Zbl 0406.28009

[8] Hunt, R. e Wheeden, R., On the boundary values of harmonic functions, Trans. Amer. Math. Soc, 132 (1968), 307-322. | MR 226044 | Zbl 0159.40501

[9] Jerison, J. e Kenig, , Boundary behavior of harmonic functions in Non-tangentially Accessible Domains, Advances in mathematics, 46 (1982), 80-147. | MR 676988 | Zbl 0514.31003

[10] Kenig, C., Harmonic analysis techniques for second order elliptic boundary value problems, CBMS, 83 (1994). | MR 1282720 | Zbl 0812.35001