Explicit Teichmüller curves with complementary series
[Courbes de Teichmüller explicites avec série complémentaires]
Matheus, Carlos ; Weitze-Schmithüsen, Gabriela
Bulletin de la Société Mathématique de France, Tome 141 (2013), p. 557-602 / Harvested from Numdam

On construit une famille explicite de courbes de Teichmüller arithmétiques 𝒞 2k , k, supportant des probabilités SL (2,)-invariantes μ 2k telles que la SL (2,)-representation associée sur L 2 (𝒞 2k ,μ 2k ) a des séries complémentaires pour tout k3. En fait, la taille du trou spectral de cette famille tend vers zéro. En particulier, le flot géodésique de Teichmüller restreint à ces courbes de Teichmüller explicites 𝒞 2k a une vitesse de mélange exponentiel arbitrarement lente.

We construct an explicit family of arithmetic Teichmüller curves 𝒞 2k , k, supporting SL (2,)-invariant probabilities μ 2k such that the associated SL (2,)-representation on L 2 (𝒞 2k ,μ 2k ) has complementary series for every k3. Actually, the size of the spectral gap along this family goes to zero. In particular, the Teichmüller geodesic flow restricted to these explicit arithmetic Teichmüller curves 𝒞 2k has arbitrarily slow rate of exponential mixing.

Publié le : 2013-01-01
DOI : https://doi.org/10.24033/bsmf.2656
Classification:  37D40
Mots clés: espaces de modules, différentielles abéliennes, surfaces de translation, surfaces à petits carreaux, courbes de teichmüller, trou spectral, vitesse de mélange, série complémentaire
@article{BSMF_2013__141_4_557_0,
     author = {Matheus, Carlos and Weitze-Schmith\"usen, Gabriela},
     title = {Explicit Teichm\"uller curves with complementary series},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {141},
     year = {2013},
     pages = {557-602},
     doi = {10.24033/bsmf.2656},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BSMF_2013__141_4_557_0}
}
Matheus, Carlos; Weitze-Schmithüsen, Gabriela. Explicit Teichmüller curves with complementary series. Bulletin de la Société Mathématique de France, Tome 141 (2013) pp. 557-602. doi : 10.24033/bsmf.2656. http://gdmltest.u-ga.fr/item/BSMF_2013__141_4_557_0/

[1] J. Adámek, H. Herrlich & G. E. Strecker - Abstract and concrete categories, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., 1990. | MR 1051419

[2] A. Avila & S. Gouëzel - « Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow », Ann. of Math. 178 (2013), p. 385-442. | MR 3071503

[3] A. Avila, S. Gouëzel & J.-C. Yoccoz - « Exponential mixing for the Teichmüller flow », Publ. Math. I.H.É.S. 104 (2006), p. 143-211. | Numdam | MR 2264836

[4] N. Bergeron - Le spectre des surfaces hyperboliques, Savoirs Actuels, EDP Sciences, 2011. | MR 2857626

[5] P. Buser - « A note on the isoperimetric constant », Ann. Sci. École Norm. Sup. 15 (1982), p. 213-230. | MR 683635

[6] J. S. Ellenberg & D. B. Mcreynolds - « Arithmetic Veech sublattices of SL (2,𝐙) », Duke Math. J. 161 (2012), p. 415-429. | MR 2881227

[7] A. Eskin & M. Mirzakhani - « Invariant and stationary measures for the SL(2,) action on moduli space », preprint http://www.math.uchicago.edu/~eskin/measures.pdf, 2012.

[8] E. Gutkin & C. Judge - « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J. 103 (2000), p. 191-213. | MR 1760625

[9] P. Hubert & S. Lelièvre - « Prime arithmetic Teichmüller discs in (2) », Israel J. Math. 151 (2006), p. 281-321. | MR 2214127

[10] P. Hubert & T. A. Schmidt - « An introduction to Veech surfaces », in Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, p. 501-526. | MR 2186246

[11] M. Kontsevich & A. Zorich - « Connected components of the moduli spaces of Abelian differentials with prescribed singularities », Invent. Math. 153 (2003), p. 631-678. | MR 2000471

[12] A. Lubotzky - Discrete groups, expanding graphs and invariant measures, Progress in Math., vol. 125, Birkhäuser, 1994. | MR 1308046

[13] H. Masur - « Interval exchange transformations and measured foliations », Ann. of Math. 115 (1982), p. 169-200. | MR 644018

[14] M. Möller - « Teichmüller curves, Galois actions and GT ^-relations », Math. Nachr. 278 (2005), p. 1061-1077.

[15] F. Nisbach - « The Galois action on origami curves and a special class of origamis », Dissertation, 2011, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025252.

[16] M. Ratner - « The rate of mixing for geodesic and horocycle flows », Ergodic Theory Dynam. Systems 7 (1987), p. 267-288. | MR 896798

[17] G. Schmithüsen - « An algorithm for finding the Veech group of an origami », Experiment. Math. 13 (2004), p. 459-472.

[18] -, « Veech groups of origamis », Dissertation, Universität Karlsruhe, 2005.

[19] A. Selberg - « On the estimation of Fourier coefficients of modular forms », in Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., 1965, p. 1-15. | MR 182610

[20] W. A. Veech - « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math. 115 (1982), p. 201-242. | MR 644019

[21] -, « The Teichmüller geodesic flow », Ann. of Math. 124 (1986), p. 441-530.

[22] A. Zorich - « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437-583. | MR 2261104