Étant donnée une dg algèbre , propre et lisse, un dg -module parfait et un endomorphisme de , nous définissons la classe de Hochschild de la paire . Cette classe est à valeurs dans l’homologie de Hochschild de l’algèbre . Notre principal résultat est une formule de type Riemann-Roch faisant intervenir la convolution de deux de ces classes de Hochschild.
Given a smooth proper dg algebra , a perfect dg -module and an endomorphism of , we define the Hochschild class of the pair with values in the Hochschild homology of the algebra . Our main result is a Riemann-Roch type formula involving the convolution of two such Hochschild classes.
@article{BSMF_2013__141_2_197_0,
author = {Petit, Fran\c cois},
title = {A Riemann-Roch theorem for dg algebras},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
volume = {141},
year = {2013},
pages = {197-223},
doi = {10.24033/bsmf.2646},
language = {en},
url = {http://dml.mathdoc.fr/item/BSMF_2013__141_2_197_0}
}
Petit, François. A Riemann-Roch theorem for dg algebras. Bulletin de la Société Mathématique de France, Tome 141 (2013) pp. 197-223. doi : 10.24033/bsmf.2646. http://gdmltest.u-ga.fr/item/BSMF_2013__141_2_197_0/
[1] - « Existence theorems for dualizing complexes over non-commutative graded and filtered rings », J. Algebra 195 (1997), p. 662-679. | MR 1469646
[2] & - « Representable functors, Serre functors, and reconstructions », Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), p. 1183-1205, 1337. | MR 1039961
[3] - « The Mukai pairing, I: the Hochschild structure, arXiv:math/0308079 », ArXiv Mathematics e-prints (2003).
[4] -, « The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism », Adv. Math. 194 (2005), p. 34-66. | MR 2141853
[5] & - « The Mukai pairing. I. A categorical approach », New York J. Math. 16 (2010), p. 61-98. | MR 2657369
[6] & - « A Riemann-Roch-Hirzebruch formula for traces of differential operators », Ann. Sci. Éc. Norm. Supér. 41 (2008), p. 621-653. | Numdam | MR 2489635
[7] - Modules over operads and functors, Lecture Notes in Math., vol. 1967, Springer, 2009. | MR 2494775
[8] - « Lectures on Noncommutative Geometry, arXiv:math/0506603 », ArXiv Mathematics e-prints (2005).
[9] - « Homological algebra of homotopy algebras », Comm. Algebra 25 (1997), p. 3291-3323. | MR 1465117
[10] - Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc., 1999. | MR 1650134
[11] - « Auslander-Reiten theory over topological spaces », Comment. Math. Helv. 79 (2004), p. 160-182. | MR 2031704
[12] & - Deformation quantization modules, Astérisque, vol. 345, Soc. Math. France, 2012. | MR 3012169
[13] - « Invariance and localization for cyclic homology of DG algebras », J. Pure Appl. Algebra 123 (1998), p. 223-273. | MR 1492902
[14] -, « On differential graded categories », in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, p. 151-190. | MR 2275593
[15] & - « Notes on -algebras, -categories and non-commutative geometry », in Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, 2009, p. 153-219. | MR 2596638
[16] - Cyclic homology, second éd., Grund. Math. Wiss., vol. 301, Springer, 1998, Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili. | MR 1600246
[17] - « The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem, arXiv:math/0610553 », ArXiv Mathematics e-prints (2006). | MR 2472137
[18] - « Residues and duality for singularity categories of isolated Gorenstein singularities, arXiv:0912.1629v2 », ArXiv e-prints (2009). | MR 3143706
[19] - « The connection between the -theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel », Ann. Sci. École Norm. Sup. 25 (1992), p. 547-566. | MR 1191736
[20] -, Triangulated categories, Annals of Math. Studies, vol. 148, Princeton Univ. Press, 2001. | MR 1812507
[21] & - « Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, arXiv:1002.2116v2 », ArXiv e-prints (2010). | MR 2954619
[22] & - « Traces in symmetric monoidal categories, arXiv:1107.6032 », ArXiv e-prints (2011).
[23] - « The Mukai pairing and integral transforms in Hochschild homology », Mosc. Math. J. 10 (2010), p. 629-645, 662-663. | MR 2732577
[24] - « Localization with respect to certain periodic homology theories », Amer. J. Math. 106 (1984), p. 351-414. | MR 737778
[25] - « On Serre duality for compact homologically smooth DG algebras, arXiv:math/0702590 », ArXiv Mathematics e-prints (2007).
[26] - « Hirzebruch-Riemann-Roch-type formula for DG algebras », Proceedings of the London Mathematical Society (2012). | MR 3020737
[27] & - « Moduli of objects in dg-categories », Ann. Sci. École Norm. Sup. 40 (2007), p. 387-444. | MR 2493386