Nous exposons une démonstration rectifiée de [1, Théorème 9], montrant ainsi que tout simplexe de Choquet métrisable et de dimension infinie se représente comme intersection d'une suite décroissante de simplexes de Bauer.
We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.
@article{BSMF_2011__139_1_89_0, author = {Edwards, David Albert and Kalenda, Ond\v rej F. K. and Spurn\'y, Ji\v r\'\i }, title = {A note on intersections of simplices}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {139}, year = {2011}, pages = {89-95}, doi = {10.24033/bsmf.2601}, mrnumber = {2815029}, zbl = {1227.46011}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2011__139_1_89_0} }
Edwards, David A.; Kalenda, Ondřej F. K.; Spurný, Jiří. A note on intersections of simplices. Bulletin de la Société Mathématique de France, Tome 139 (2011) pp. 89-95. doi : 10.24033/bsmf.2601. http://gdmltest.u-ga.fr/item/BSMF_2011__139_1_89_0/
[1] « Systèmes projectifs d'ensembles convexes compacts », Bull. Soc. Math. France 103 (1975), p. 225-240. | Numdam | MR 397359 | Zbl 0346.46002
-[2] « Infinite dimensional convexity », in Handbook of the geometry of Banach spaces, Vol. I, North-Holland, 2001, p. 599-670. | MR 1863703 | Zbl 1086.46004
, & -[3] « Banach spaces whose duals are spaces and their representing matrices », Acta Math. 126 (1971), p. 165-193. | MR 291771 | Zbl 0209.43201
& -[4] « The Poulsen simplex », Ann. Inst. Fourier (Grenoble) 28 (1978), p. 91-114. | Numdam | MR 500918 | Zbl 0363.46006
, & -[5] « Characterization of Bauer simplices and some other classes of Choquet simplices by their representing matrices », in Notes in Banach spaces, Univ. Texas Press, 1980, p. 306-358. | MR 606224 | Zbl 0556.46006
-