Nous nous intéressons dans cet article au caractère bien posé des équations de Schrödinger non-linéaires cubiques défocalisantes sur les variétés riemanniennes compactes sans bord, en régularité , , sous certaines conditions bilinéaires de Strichartz. Nous trouvons un tel que la solution est globale pour .
In this paper, we will study global well-posedness for the cubic defocusing nonlinear Schrödinger equations on the compact Riemannian manifold without boundary, below the energy space, i.e. , under some bilinear Strichartz assumption. We will find some , such that the solution is global for .
@article{BSMF_2010__138_4_583_0, author = {Zhong, Sijia}, title = {Global existence of solutions to Schr\"odinger equations on compact riemannian manifolds below $H^1$}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {138}, year = {2010}, pages = {583-613}, doi = {10.24033/bsmf.2597}, mrnumber = {2794885}, zbl = {1236.35002}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2010__138_4_583_0} }
Zhong, Sijia. Global existence of solutions to Schrödinger equations on compact riemannian manifolds below $H^1$. Bulletin de la Société Mathématique de France, Tome 138 (2010) pp. 583-613. doi : 10.24033/bsmf.2597. http://gdmltest.u-ga.fr/item/BSMF_2010__138_4_583_0/
[1] « Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds », Commun. Pure Appl. Anal. 9 (2010), p. 261-280. | MR 2600435 | Zbl 1187.35230
-[2] « Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains », Bull. Soc. Math. France 136 (2008), p. 27-65. | Numdam | MR 2415335 | Zbl 1157.35100
-[3] « On Strichartz estimates for Schrödinger operators in compact manifolds with boundary », Proc. Amer. Math. Soc. 136 (2008), p. 247-256. | MR 2350410 | Zbl 1169.35012
, & -[4] « Exponential sums and nonlinear Schrödinger equations », Geom. Funct. Anal. 3 (1993), p. 157-178. | MR 1209300 | Zbl 0787.35096
-[5] -, « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation », Geom. Funct. Anal. 3 (1993), p. 209-262. | MR 1215780 | Zbl 0787.35097
[6] -, « Refinements of Strichartz’ inequality and applications to D-NLS with critical nonlinearity », Int. Math. Res. Not. 1998 (1998), p. 253-283. | MR 1616917 | Zbl 0917.35126
[7] -, « A remark on normal forms and the “-method” for periodic NLS », J. Anal. Math. 94 (2004), p. 125-157. | MR 2124457 | Zbl 1084.35085
[8] -, « On Strichartz's inequalities and the nonlinear Schrödinger equation on irrational tori », in Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, 2007, p. 1-20. | MR 2331676 | Zbl 1169.35054
[9] « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math. 126 (2004), p. 569-605. | MR 2058384 | Zbl 1067.58027
, & -[10] -, « Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces », Invent. Math. 159 (2005), p. 187-223. | MR 2142336 | Zbl 1092.35099
[11] -, « Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations », Ann. Sci. École Norm. Sup. 38 (2005), p. 255-301. | Numdam | MR 2144988 | Zbl 1116.35109
[12] Semilinear Schrödinger equations, Courant Lecture Notes in Math., vol. 10, New York University Courant Institute of Mathematical Sciences, 2003. | Zbl 1055.35003
-[13] « Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on », Int. Math. Res. Not. 2007 (2007). | Zbl 1142.35085
, & -[14] « Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation », Math. Res. Lett. 9 (2002), p. 659-682. | MR 1906069 | Zbl 1152.35491
, , , & -[15] -, « Resonant decompositions and the -method for the cubic nonlinear Schrödinger equation on », Discrete Contin. Dyn. Syst. 21 (2008), p. 665-686. | MR 2399431 | Zbl 1147.35095
[16] « Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D », Discrete Contin. Dyn. Syst. 19 (2007), p. 37-65. | MR 2318273 | Zbl pre05236234
, , & -[17] « On the global existence of rough solutions of the cubic defocusing Schrödinger equation in », J. Hyperbolic Differ. Equ. 4 (2007), p. 233-257. | MR 2329384 | Zbl 1122.35132
& -[18] « Le problème de Cauchy pour des équations aux dérivées partielles semi-linéaires périodiques en variables d'espace », Séminaire Bourbaki (1995), exposé no 796. | Numdam | Zbl 0870.35096
-[19] « The cubic nonlinear Schrödinger equation in two dimensions with radial data », J. Eur. Math. Soc. (JEMS) 11 (2009), p. 1203-1258. | MR 2557134 | Zbl 1187.35237
, & -[20] An introduction to semiclassical and microlocal analysis, Universitext, Springer, 2002. | MR 1872698 | Zbl 0994.35003
-[21] « The growth in time of higher Sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds », J. Differential Equations 245 (2008), p. 359-376. | MR 2428002 | Zbl 1143.58012
-