Un RD-espace est un espace de type homogène au sens de Coifman et Weiss, possédant en outre une propriété de doublement inverse. Les auteurs prouvent que pour un espace de type homogène de « dimension » , il existe un tel que les quasi-normes des fonctions radiales maximales et grand-maximales d’une certaine classe de distributions soient équivalentes lorsque . Ce résultat fournit une caractérisation des espaces de Hardy sur en termes de fonctions radiales maximales.
An RD-space is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type having “dimension” , there exists a such that for certain classes of distributions, the quasi-norms of their radial maximal functions and grand maximal functions are equivalent when . This result yields a radial maximal function characterization for Hardy spaces on .
@article{BSMF_2009__137_2_225_0, author = {Grafakos, Loukas and Liu, Liguang and Yang, Dachun}, title = {Radial maximal function characterizations for Hardy spaces on RD-spaces}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {137}, year = {2009}, pages = {225-251}, doi = {10.24033/bsmf.2574}, mrnumber = {2543475}, zbl = {1205.42016}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2009__137_2_225_0} }
Grafakos, Loukas; Liu, Liguang; Yang, Dachun. Radial maximal function characterizations for Hardy spaces on RD-spaces. Bulletin de la Société Mathématique de France, Tome 137 (2009) pp. 225-251. doi : 10.24033/bsmf.2574. http://gdmltest.u-ga.fr/item/BSMF_2009__137_2_225_0/
[1] « Spectral multipliers on Lie groups of polynomial growth », Proc. Amer. Math. Soc. 120 (1994), p. 973-979. | MR 1172944 | Zbl 0794.43003
-[2] « A theorem with remarks on analytic capacity and the Cauchy integral », Colloq. Math. 60/61 (1990), p. 601-628. | MR 1096400 | Zbl 0758.42009
-[3] Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., Vol. 242, Springer, 1971. | MR 499948 | Zbl 0224.43006
& -[4] -, « Extensions of Hardy spaces and their use in analysis », Bull. Amer. Math. Soc. 83 (1977), p. 569-645. | MR 447954 | Zbl 0358.30023
[5] « Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces », Mem. Amer. Math. Soc. 182 (2006), p. 119. | MR 2229731 | Zbl 1100.43005
, & -[6] « Hardy spaces of spaces of homogeneous type », Proc. Amer. Math. Soc. 131 (2003), p. 3181-3189. | MR 1992859 | Zbl 1032.42023
& -[7] « spaces of several variables », Acta Math. 129 (1972), p. 137-193. | MR 447953 | Zbl 0257.46078
& -[8] Classical Fourier analysis, second éd., Graduate Texts in Math., vol. 249, Springer, 2008. | MR 2445437 | Zbl 1220.42001
-[9] « Maximal function characterizations of Hardy spaces on RD-spaces and their applications », Sci. China (Ser. A) 51 (2008), p. 2253-2284. | MR 2462027 | Zbl 1176.42017
, & -[10] « Triebel-Lizorkin spaces on spaces of homogeneous type », Studia Math. 108 (1994), p. 247-273. | MR 1259279 | Zbl 0822.46033
-[11] « Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type », Math. Nachr. 279 (2006), p. 1505-1537. | MR 2269253 | Zbl 1179.42016
, & -[12] -, « A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces », to appear in Abstr. Appl. Anal, Art. ID 893409, 2008. | MR 2485404 | Zbl 1193.46018
[13] Lectures on analysis on metric spaces, Universitext, Springer, 2001. | MR 1800917 | Zbl 0985.46008
-[14] « A decomposition into atoms of distributions on spaces of homogeneous type », Adv. in Math. 33 (1979), p. 271-309. | MR 546296 | Zbl 0431.46019
& -[15] « A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces », to appear in Forum Math. | MR 2503306 | Zbl 1171.42013
& -[16] « Differentiable control metrics and scaled bump functions », J. Differential Geom. 57 (2001), p. 465-492. | MR 1882665 | Zbl 1041.58006
& -[17] -, « On the product theory of singular integrals », Rev. Mat. Iberoamericana 20 (2004), p. 531-561. | MR 2073131
[18] « Balls and metrics defined by vector fields. I. Basic properties », Acta Math. 155 (1985), p. 103-147. | MR 793239 | Zbl 0578.32044
, & -[19] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 1993. | MR 1232192 | Zbl 0821.42001
-[20] -, « Some geometrical concepts arising in harmonic analysis », Geom. Funct. Anal., Special Volume, Part I (2000), p. 434-453, GAFA 2000 (Tel Aviv, 1999). | MR 1826263
[21] « On the theory of harmonic functions of several variables. I. The theory of -spaces », Acta Math. 103 (1960), p. 25-62. | MR 121579 | Zbl 0097.28501
& -[22] « A maximal function characterization of on the space of homogeneous type », Trans. Amer. Math. Soc. 262 (1980), p. 579-592. | MR 586737 | Zbl 0503.46020
-[23] « Analysis on Lie groups », J. Funct. Anal. 76 (1988), p. 346-410. | MR 924464 | Zbl 0634.22008
-[24] Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, 1992. | MR 1218884 | Zbl 0813.22003
, & -