Soit une -algèbre séparable unital dont chaque fibre est isomorphe à une même -algèbre -injective et fortement auto-absorbante. Nous montrons que si l’espace compact et Hausdorff est de dimension finie, alors et sont isomorphes en tant que -algèbres. Ce resultat est connu pour ne pas s’étendre au cas des espaces de dimension infinie.
Suppose is a separable unital -algebra each fibre of which is isomorphic to the same strongly self-absorbing and -injective -algebra . We show that and are isomorphic as -algebras provided the compact Hausdorff space is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.
@article{BSMF_2008__136_4_575_0, author = {Dadarlat, Marius and Winter, Wilhelm}, title = {Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {136}, year = {2008}, pages = {575-606}, doi = {10.24033/bsmf.2567}, mrnumber = {2443037}, zbl = {1170.46051}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2008__136_4_575_0} }
Dadarlat, Marius; Winter, Wilhelm. Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres. Bulletin de la Société Mathématique de France, Tome 136 (2008) pp. 575-606. doi : 10.24033/bsmf.2567. http://gdmltest.u-ga.fr/item/BSMF_2008__136_4_575_0/
[1] « Generalized inductive limits of finite-dimensional -algebras », Math. Ann. 307 (1997), p. 343-380. | MR 1437044 | Zbl 0874.46036
& -[2] « Global Glimm halving for -bundles », J. Operator Theory 52 (2004), p. 385-420. | MR 2120237 | Zbl 1073.46509
& -[3] « Continuous fields of -algebras over finite dimensional spaces », preprint, arXiv:math.OA/0611405, 2006. | MR 2555914 | Zbl 1190.46040
-[4] -, « Fiberwise -equivalence of continuous fields of -algebras », preprint, arXiv:math.OA/0611408, 2006.
[5] « On the -theory of strongly self-absorbing -algebras », preprint, arXiv:0704.0583, to appear in Math. Scand., 2007. | MR 2498373 | Zbl 1170.46065
& -[6] « Champs continus d’espaces hilbertiens et de -algèbres », Bull. Soc. Math. France 91 (1963), p. 227-284. | Numdam | MR 163182 | Zbl 0127.33102
& -[7] « -algebras, stability and strongly self-absorbing -algebras », Math. Ann. 339 (2007), p. 695-732. | MR 2336064 | Zbl 1128.46020
, & -[8] Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, 1941. | MR 6493 | Zbl 0060.39808
& -[9] « Equivariant -theory and the Novikov conjecture », Invent. Math. 91 (1988), p. 147-201. | MR 918241 | Zbl 0647.46053
-[10] « Central sequences in -algebras and strongly purely infinite algebras », in Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, 2006, p. 175-231. | MR 2265050 | Zbl 1118.46054
-[11] Classification of nuclear -algebras, Encyclopaedia Math. Sci, vol. 126, Springer, 2002. | MR 1878882 | Zbl 0985.00012
-[12] « Strongly self-absorbing -algebras », Trans. Amer. Math. Soc. 359 (2007), p. 3999-4029. | MR 2302521 | Zbl 1120.46046
& -[13] « Localizing the Elliott conjecture at strongly self-absorbing -algebras », preprint, arXiv:0708.0283, 2007. | MR 2302521
-[14] -, « Simple -algebras with locally finite decomposition rank », J. Funct. Anal. 243 (2007), p. 394-425. | MR 2289694 | Zbl 1121.46047