Si , alors il existe une mesure de probabilité avec support de dimension d’Hausdorff tel que est une fonction Lipschitz de classe .
If , then there exists a probability measure such that the Hausdorff dimension of the support of is and is a Lipschitz function of class .
@article{BSMF_2008__136_3_439_0,
author = {K\"orner, Thomas},
title = {On a theorem of Saeki concerning convolution squares of singular measures},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
volume = {136},
year = {2008},
pages = {439-464},
doi = {10.24033/bsmf.2562},
mrnumber = {2415349},
zbl = {1183.42004},
language = {en},
url = {http://dml.mathdoc.fr/item/BSMF_2008__136_3_439_0}
}
Körner, Thomas. On a theorem of Saeki concerning convolution squares of singular measures. Bulletin de la Société Mathématique de France, Tome 136 (2008) pp. 439-464. doi : 10.24033/bsmf.2562. http://gdmltest.u-ga.fr/item/BSMF_2008__136_3_439_0/
[1] - A treatise on trigonometric series. Vols. I, II, Authorized translation by Margaret F. Mullins. A Pergamon Press Book, The Macmillan Co., 1964. | MR 171116 | Zbl 0129.28002
[2] & - Essays in commutative harmonic analysis, Grund. Math. Wiss., vol. 238, Springer, 1979. | MR 550606 | Zbl 0439.43001
[3] & - Probability and random processes, third éd., Oxford University Press, 2001. | MR 2059709 | Zbl 0759.60001
[4] & - « On convolution squares of singular measures », Colloq. Math. 100 (2004), p. 9-16. | MR 2079343 | Zbl 1052.43001
[5] - Set theory, Chelsea Publishing Company, New York, 1957. | MR 86020 | Zbl 0081.04601
[6] - « Probability inequalities for sums of bounded random variables », J. Amer. Statist. Assoc. 58 (1963), p. 13-30. | MR 144363 | Zbl 0127.10602
[7] & - Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., No. 1301, Hermann, 1963. | MR 160065 | Zbl 0112.29304
[8] - « Small subsets of finite abelian groups », Ann. Inst. Fourier (Grenoble) 18 (1968), p. 99-102 V. | Numdam | MR 241532 | Zbl 0175.30501
[9] - Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, 1966. | MR 217751 | Zbl 0158.40802
[10] - « On convolution squares of singular measures », Illinois J. Math. 24 (1980), p. 225-232. | MR 575063 | Zbl 0496.42006
[11] & - « Fourier-Stieltjes Transforms and Singular Infinite Convolutions », Amer. J. Math. 60 (1938), p. 513-522. | JFM 64.0223.02 | MR 1507332