Unit vector fields on antipodally punctured spheres: big index, big volume
[Champs unitaires dans les sphères antipodalement trouées : grand indice entraîne grand volume]
Brito, Fabiano G. B. ; Chacón, Pablo M. ; Johnson, David L.
Bulletin de la Société Mathématique de France, Tome 136 (2008), p. 147-157 / Harvested from Numdam

Nous établissons une borne inférieure pour le volume d’un champ de vecteurs v défini dans 𝐒 n {±x}, n=2,3. Cette borne inférieure dépend de la somme des valeurs absolues des indices de v en x et en -x.

We establish in this paper a lower bound for the volume of a unit vector field v defined on 𝐒 n {±x}, n=2,3. This lower bound is related to the sum of the absolute values of the indices of v at x and -x.

Publié le : 2008-01-01
DOI : https://doi.org/10.24033/bsmf.2551
Classification:  53C20,  57R25,  53C12
Mots clés: champs vectoriels unitaires, volume, singularités, indice
@article{BSMF_2008__136_1_147_0,
     author = {Brito, Fabiano G. B. and Chac\'on, Pablo M. and Johnson, David L.},
     title = {Unit vector fields on antipodally punctured spheres: big index, big volume},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {136},
     year = {2008},
     pages = {147-157},
     doi = {10.24033/bsmf.2551},
     mrnumber = {2415338},
     zbl = {1158.53023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BSMF_2008__136_1_147_0}
}
Brito, Fabiano G. B.; Chacón, Pablo M.; Johnson, David L. Unit vector fields on antipodally punctured spheres: big index, big volume. Bulletin de la Société Mathématique de France, Tome 136 (2008) pp. 147-157. doi : 10.24033/bsmf.2551. http://gdmltest.u-ga.fr/item/BSMF_2008__136_1_147_0/

[1] V. Borrelli & O. Gil-Medrano - « Area minimizing vector fields on round 2-spheres », 2006, preprint. | MR 2629689 | Zbl 1187.53029

[2] -, « A critical radius for unit Hopf vector fields on spheres », Math. Ann. 334 (2006), p. 731-751. | MR 2209254 | Zbl 1115.53025

[3] F. G. B. Brito - « Total bending of flows with mean curvature correction », Differential Geom. Appl. 12 (2000), p. 157-163. | MR 1758847 | Zbl 0995.53023

[4] F. G. B. Brito & P. M. Chacón - « A topological minorization for the volume of vector fields on 5-manifolds », Arch. Math. (Basel) 85 (2005), p. 283-292. | MR 2172387 | Zbl 1089.53025

[5] F. G. B. Brito, P. M. Chacón & A. M. Naveira - « On the volume of unit vector fields on spaces of constant sectional curvature », Comment. Math. Helv. 79 (2004), p. 300-316. | MR 2059434 | Zbl 1057.53022

[6] P. M. Chacón - « Sobre a energia e energia corrigida de campos unitários e distribuições. Volume de campos unitários », Thèse, Universidade de São Paulo, Brazil, 2000, and Universidad de Valencia, Spain, 2001.

[7] S. S. Chern - « On the curvatura integra in a Riemannian manifold », Ann. of Math. (2) 46 (1945), p. 674-684. | MR 14760 | Zbl 0060.38104

[8] S. S. Chern & J. Simons - « Characteristic forms and geometric invariants », Ann. of Math. (2) 99 (1974), p. 48-69. | MR 353327 | Zbl 0283.53036

[9] O. Gil-Medrano & E. Llinares-Fuster - « Second variation of volume and energy of vector fields. Stability of Hopf vector fields », Math. Ann. 320 (2001), p. 531-545. | MR 1846776 | Zbl 0989.53020

[10] H. Gluck & W. Ziller - « On the volume of a unit vector field on the three-sphere », Comment. Math. Helv. 61 (1986), p. 177-192. | MR 856085 | Zbl 0605.53022

[11] D. L. Johnson - « Chern-Simons forms on associated bundles, and boundary terms », Geometria Dedicata 120 (2007), p. 23-24. | MR 2350146 | Zbl 1148.53014

[12] S. L. Pedersen - « Volumes of vector fields on spheres », Trans. Amer. Math. Soc. 336 (1993), p. 69-78. | MR 1079056 | Zbl 0771.53023