Nous établissons une borne inférieure pour le volume d’un champ de vecteurs défini dans , . Cette borne inférieure dépend de la somme des valeurs absolues des indices de en et en .
We establish in this paper a lower bound for the volume of a unit vector field defined on , . This lower bound is related to the sum of the absolute values of the indices of at and .
@article{BSMF_2008__136_1_147_0, author = {Brito, Fabiano G. B. and Chac\'on, Pablo M. and Johnson, David L.}, title = {Unit vector fields on antipodally punctured spheres: big index, big volume}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {136}, year = {2008}, pages = {147-157}, doi = {10.24033/bsmf.2551}, mrnumber = {2415338}, zbl = {1158.53023}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2008__136_1_147_0} }
Brito, Fabiano G. B.; Chacón, Pablo M.; Johnson, David L. Unit vector fields on antipodally punctured spheres: big index, big volume. Bulletin de la Société Mathématique de France, Tome 136 (2008) pp. 147-157. doi : 10.24033/bsmf.2551. http://gdmltest.u-ga.fr/item/BSMF_2008__136_1_147_0/
[1] « Area minimizing vector fields on round -spheres », 2006, preprint. | MR 2629689 | Zbl 1187.53029
& -[2] -, « A critical radius for unit Hopf vector fields on spheres », Math. Ann. 334 (2006), p. 731-751. | MR 2209254 | Zbl 1115.53025
[3] « Total bending of flows with mean curvature correction », Differential Geom. Appl. 12 (2000), p. 157-163. | MR 1758847 | Zbl 0995.53023
-[4] « A topological minorization for the volume of vector fields on 5-manifolds », Arch. Math. (Basel) 85 (2005), p. 283-292. | MR 2172387 | Zbl 1089.53025
& -[5] « On the volume of unit vector fields on spaces of constant sectional curvature », Comment. Math. Helv. 79 (2004), p. 300-316. | MR 2059434 | Zbl 1057.53022
, & -[6] « Sobre a energia e energia corrigida de campos unitários e distribuições. Volume de campos unitários », Thèse, Universidade de São Paulo, Brazil, 2000, and Universidad de Valencia, Spain, 2001.
-[7] « On the curvatura integra in a Riemannian manifold », Ann. of Math. (2) 46 (1945), p. 674-684. | MR 14760 | Zbl 0060.38104
-[8] « Characteristic forms and geometric invariants », Ann. of Math. (2) 99 (1974), p. 48-69. | MR 353327 | Zbl 0283.53036
& -[9] « Second variation of volume and energy of vector fields. Stability of Hopf vector fields », Math. Ann. 320 (2001), p. 531-545. | MR 1846776 | Zbl 0989.53020
& -[10] « On the volume of a unit vector field on the three-sphere », Comment. Math. Helv. 61 (1986), p. 177-192. | MR 856085 | Zbl 0605.53022
& -[11] « Chern-Simons forms on associated bundles, and boundary terms », Geometria Dedicata 120 (2007), p. 23-24. | MR 2350146 | Zbl 1148.53014
-[12] « Volumes of vector fields on spheres », Trans. Amer. Math. Soc. 336 (1993), p. 69-78. | MR 1079056 | Zbl 0771.53023
-