Soit un corps de nombres avec anneaux d’entiers ; nous prouvons un analogue, sur des anneaux finis de la forme , du théorème fondamental sur la transformation de Fourier de l’invariante relative d’un espace vectoriel préhomogène. Ici, est un idéal premier assez grand de et . Dans l’appendice, F. Sato donne une application des théorèmes 1.1, 1.3 et des théorèmes A, B, C de J.Denef et A.Gyoja [Character sums associated to prehomogeneous vector spaces, Compos. Math., 113 (1998), 237-346] à l’équation fonctionelle de -fonctions de type Dirichlet associées aux espaces vectorielles préhomogènes.
For a number field with ring of integers , we prove an analogue over finite rings of the form of the fundamental theorem on the Fourier transform of a relative invariant of prehomogeneous vector spaces, where is a big enough prime ideal of and . In the appendix, F.Sato gives an application of the Theorems 1.1, 1.3 and the Theorems A, B, C in J.Denef and A.Gyoja [Character sums associated to prehomogeneous vector spaces, Compos. Math., 113 (1998), 237-346] to the functional equation of -functions of Dirichlet type associated with prehomogeneous vector spaces.
@article{BSMF_2007__135_4_475_0, author = {Cluckers, Raf and Herremans, Adriaan}, title = {The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato)}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {135}, year = {2007}, pages = {475-494}, doi = {10.24033/bsmf.2543}, mrnumber = {2439196}, zbl = {1207.11118}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2007__135_4_475_0} }
Cluckers, Raf; Herremans, Adriaan. The fundamental theorem of prehomogeneous vector spaces modulo $p^m$ (With an appendix by F. Sato). Bulletin de la Société Mathématique de France, Tome 135 (2007) pp. 475-494. doi : 10.24033/bsmf.2543. http://gdmltest.u-ga.fr/item/BSMF_2007__135_4_475_0/
[1] Théorie des nombres, Traduit par Myriam et Jean-Luc Verley. Traduction faite d'après l'édition originale russe. Monographies Internationales de Mathématiques Modernes, No. 8, Gauthier-Villars, 1967. | MR 205908 | Zbl 0145.04901
& -[2] Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, No. 1333, Hermann, 1967. | MR 219078 | Zbl 0206.50402
-[3] « The Fundamental Theorem of prehomogeneous vector spaces modulo », main body of this article. | Numdam | Zbl 1207.11118
& -[4] « The adelic zeta function associated to the space of binary cubic forms. II. Local theory », J. reine angew. Math. 367 (1986), p. 27-75. | MR 839123 | Zbl 0575.10016
& -[5] « Character sums associated to prehomogeneous vector spaces », Compositio Math. 113 (1998), p. 273-346. | MR 1644996 | Zbl 0919.11086
& -[6] « Theory of prehomogeneous vector spaces without regularity condition », Publ. Res. Inst. Math. Sci. 27 (1991), p. 861-922. | MR 1145669 | Zbl 0773.14025
-[7] J 106 (1984), p. 1013-1032. | MR 761577 | Zbl 0589.14023
[8] -, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, 2000. | MR 1743467 | Zbl 0959.11047
[9] « Generalized character sums associated to regular prehomogeneous vector spaces », Geom. Funct. Anal. 10 (2000), p. 1487-1506. | MR 1810750 | Zbl 1001.11053
& -[10] Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, vol. 51, Princeton University Press, 1963. | MR 163331 | Zbl 0108.10401
-[11] « A generalization of Gauss sums and its applications to Siegel modular forms and -functions associated with the vector space of quadratic forms », J. reine angew. Math. 416 (1991), p. 91-142. | MR 1099947 | Zbl 0717.11053
-[12] -, « On -functions associated with the vector space of binary quadratic forms », Nagoya Math. J. 130 (1993), p. 149-176. | MR 1223734 | Zbl 0774.11052
[13] -, « Convergence of the zeta functions of prehomogeneous vector spaces », Nagoya Math. J. 170 (2003), p. 1-31. | MR 1994885 | Zbl 1045.11083
[14] « L-functions of prehomogeneous vector spaces », Appendix of this article.
-[15] -, « Zeta functions in several variables associated with prehomogeneous vector spaces. I. Functional equations », Tōhoku Math. J. (2) 34 (1982), p. 437-483. | MR 676121 | Zbl 0497.14007
[16] -, « On functional equations of zeta distributions », Adv. Stud. Pure Math. 15 (1989), p. 465-508. | MR 1040618 | Zbl 0714.11053
[17] « Theory of prehomogeneous vector spaces », Sugaku no Ayumi 15 (1970), p. 85-157, notes by T.Shintani. | Zbl 0715.22014
-[18] -, « Theory of prehomogeneous vector spaces (algebraic part)-the English translation of Sato's lecture from Shintani's note », Nagoya Math. J. 120 (1990), p. 1-34. | MR 1086566 | Zbl 0715.22014
[19] « A classification of irreducible prehomogeneous vector spaces and their relative invariants », Nagoya Math. J. 65 (1977), p. 1-155. | MR 430336 | Zbl 0321.14030
& -[20] « Quelques applications du théorème de densité de Chebotarev », Publ. Math. I.H.E.S. 54 (1981), p. 323-401. | Numdam | MR 644559 | Zbl 0496.12011
-[21] « -functions and character sums for quadratic forms. I », Acta Arith. 14 (1967/1968), p. 35-50. | MR 227122 | Zbl 0198.37801
-[22] « Elliptic modular forms arising from zeta functions in two variables attached to the space of binary Hermitian forms », J. Number Theory 86 (2001), p. 302-329. | MR 1813115 | Zbl 1014.11031
-[23] -, « Modular forms arising from zeta functions in two variables attached to prehomogeneous vector spaces related to quadratic forms », 2004, to appear in Nagoya Math. J., p. 1-37. | MR 2085308
[24] Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer New York, Inc., New York, 1967. | MR 234930 | Zbl 0176.33601
-