Pour un opérateur de type principal, nous démontrons que la condition () implique la résolubilité locale avec perte de 3/2 dérivées. Nous utilisons beaucoup d’éléments de la démonstration par Dencker de la conjecture de Nirenberg-Treves et nous limitons la perte de dérivées à 3/2, améliorant le résultat le plus récent de Dencker (perte de dérivées pour tout ). La condition () n’impliquant pas la résolubilité locale avec perte d’une dérivée, nous devons nous contenter d’une perte .
For a principal type pseudodifferential operator, we prove that condition implies local solvability with a loss of 3/2 derivatives. We use many elements of Dencker’s paper on the proof of the Nirenberg-Treves conjecture and we provide some improvements of the key energy estimates which allows us to cut the loss of derivatives from for any (Dencker’s most recent result) to 3/2 (the present paper). It is already known that condition does not imply local solvability with a loss of 1 derivative, so we have to content ourselves with a loss .
@article{BSMF_2006__134_4_559_0, author = {Lerner, Nicolas}, title = {Cutting the loss of derivatives for solvability under condition $(\Psi )$}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {134}, year = {2006}, pages = {559-631}, doi = {10.24033/bsmf.2522}, mrnumber = {2364944}, zbl = {1181.35355}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2006__134_4_559_0} }
Lerner, Nicolas. Cutting the loss of derivatives for solvability under condition $(\Psi )$. Bulletin de la Société Mathématique de France, Tome 134 (2006) pp. 559-631. doi : 10.24033/bsmf.2522. http://gdmltest.u-ga.fr/item/BSMF_2006__134_4_559_0/
[1] « On local solvability of linear partial differential equations », Ann. of Math. 97 (1973), p. 482-498. | MR 352746 | Zbl 0256.35002
& -[2] « Espaces fonctionnels associés au calcul de Weyl-Hörmander », Bull Soc. Math. France 122 (1994), p. 77-118. | Numdam | MR 1259109 | Zbl 0798.35172
& -[3] « Quantification asymptotique et microlocalisations d'ordre supérieur », Ann. Sci. Éc. Norm. Sup. 22 (1989), p. 377-433. | Numdam | MR 1011988 | Zbl 0753.35005
& -[4] « Estimates and solvability », Ark. Mat. 37 (1999), p. 221-243. | MR 1714771 | Zbl 1021.35137
-[5] -, « On the sufficiency of condition », preprint, May 22 2001.
[6] -, « The solvability of pseudo-differential operators », Phase space analysis of partial differential equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, vol. 1, Sc. Norm. Sup., Pisa, 2004, p. 175-200. | MR 2144409 | Zbl 1079.35105
[7] -, « The resolution of the Nirenberg-Treves conjecture », Ann. of Math. 163 (2006), p. 405-444. | MR 2199222 | Zbl 1104.35080
[8] « On positivity of pseudo-differential equations », Proc. Nat. Acad. Sci. 75 (1978), p. 4673-4674. | MR 507931 | Zbl 0391.35062
& -[9] « On the theory of general partial differential operators », Acta Math. 94 (1955), p. 161-248. | MR 76151 | Zbl 0067.32201
-[10] -, « Differential equations without solutions », Math. Ann. 140 (1960), p. 169-173. | MR 147765
[11] -, « Pseudo-differential operators and non-elliptic boundary value problems », Ann. of Math. 83 (1966), p. 129-209. | MR 233064 | Zbl 0132.07402
[12] -, « Propagation of singularities and semiglobal existence theorems for (pseudo-)differential operators of principal type », Ann. of Math. 108 (1978), p. 569-609. | MR 512434 | Zbl 0396.35087
[13] -, « Pseudo-differential operators of principal type », Singularities in boundary value problems, D. Reidel Publ. Co., Dortrecht, Boston, London, 1981.
[14] -, The analysis of linear partial differential operators I-IV, Springer Verlag, 1983-85. | Zbl 0601.35001
[15] -, Notions of convexity, Birkhäuser, 1994. | MR 1301332
[16] -, « On the solvability of pseudodifferential equations », Structure of solutions of differential equations (M. Morimoto & T. Kawai, éds.), World Sci. Publishing, River Edge, NJ, 1996, p. 183-213. | MR 1445329 | Zbl 0897.35082
[17] -, « private communications », september 2002 - august 2004.
[18] « Sufficiency of condition for local solvability in two dimensions », Ann. of Math. 128 (1988), p. 243-258. | MR 960946 | Zbl 0682.35112
-[19] -, « An iff solvability condition for the oblique derivative problem », Séminaire EDP, École polytechnique, 1990-91, exposé 18.
[20] -, « Nonsolvability in for a first order operator satisfying condition », Ann. of Math. 139 (1994), p. 363-393. | MR 1274095 | Zbl 0818.35152
[21] -, « Energy methods via coherent states and advanced pseudo-differential calculus », Multidimensional complex analysis and partial differential equations (P. Cordaro, H. Jacobowitz & S. Gindikin, éds.), Amer. Math. Soc., 1997, p. 177-201. | MR 1447224 | Zbl 0885.35152
[22] -, « Perturbation and energy estimates », Ann. Sci. Éc. Norm. Sup. 31 (1998), p. 843-886. | Numdam | MR 1664214 | Zbl 0927.35139
[23] -, « When is a pseudo-differential equation solvable? », Ann. Inst. Fourier (Grenoble) 50 (2000), p. 443-460. | Numdam | MR 1775357 | Zbl 0952.35166
[24] -, « Solving pseudo-differential equations », Proceedings of the ICM 2002 in Beijing, vol. II, Higher Education Press, 2002, p. 711-720. | MR 1957078 | Zbl 1156.35476
[25] « An example of a smooth linear partial differential equation without solution », Ann. of Math. 66 (1957), p. 155-158. | MR 88629 | Zbl 0078.08104
-[26] « Solutions nulles et solutions non analytiques », J. Math. Kyoto Univ. 1 (1962), p. 271-302. | MR 142873 | Zbl 0106.29601
-[27] « Local solvability in two dimensions: necessary conditions for the principal type case », mimeographed manuscript, University of Kansas, 1978.
-[28] « Solvability of a first order linear partial differential equation », Comm. Pure Appl. Math. 16 (1963), p. 331-351. | MR 163045 | Zbl 0117.06104
& -[29] -, « On local solvability of linear partial differential equations. I. Necessary conditions », Comm. Pure Appl. Math. 23 (1970), p. 1-38. | MR 264470 | Zbl 0191.39103
[30] -, « On local solvability of linear partial differential equations. II.Sufficient conditions », Comm. Pure Appl. Math. 23 (1970), p. 459-509. | MR 264471 | Zbl 0208.35902
[31] -, « On local solvability of linear partial differential equations. Correction », Comm. Pure Appl. Math. 24 (1971), p. 279-288. | MR 435641 | Zbl 0221.35019
[32] « Sur la résolubilité analytique microlocale des opérateurs pseudo-différentiels de type principal », Thèse, Université de Reims, 1984.
-