Nous donnons une condition nécessaire et suffisante en termes de théorèmes de dilatation pour que le calcul d’un opérateur sectoriel soit borné. Nous montrons par exemple que, si engendre un semigroupe analytique borné sur un espace UMD, alors le calcul de est borné si et seulement si admet une dilatation en un groupe borné sur . Ceci généralise un résultat de C. Le Merdy sur les espaces de Hilbert. Si est un espace , on peut choisir un autre espace à la place de .
We characterise the boundedness of the calculus of a sectorial operator in terms of dilation theorems. We show e. g. that if generates a bounded analytic semigroup on a UMD space, then the calculus of is bounded if and only if has a dilation to a bounded group on . This generalises a Hilbert space result of C.LeMerdy. If is an space we can choose another space in place of .
@article{BSMF_2006__134_4_487_0, author = {Fr\"ohlich, Andreas M. and Weis, Lutz}, title = {$H^\infty $ calculus and dilatations}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {134}, year = {2006}, pages = {487-508}, doi = {10.24033/bsmf.2520}, mrnumber = {2364942}, zbl = {1168.47015}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2006__134_4_487_0} }
Fröhlich, Andreas M.; Weis, Lutz. $H^\infty $ calculus and dilatations. Bulletin de la Société Mathématique de France, Tome 134 (2006) pp. 487-508. doi : 10.24033/bsmf.2520. http://gdmltest.u-ga.fr/item/BSMF_2006__134_4_487_0/
[1] « The Kato square root problem for higher order elliptic operators and systems on », J. Evol. Equ. 1 (2001), p. 361-385. | MR 1877264 | Zbl 1019.35029
, , & -[2] Square root problem for divergence operators and related topics, Astérisque, vol. 249, Soc. Math. France, 1998. | MR 1651262 | Zbl 0909.35001
& -[3] « Martingale transforms and the geometry of Banach spaces », Springer Lecture Notes in Math., vol. 860, 1981, p. 35-50. | MR 647954 | Zbl 0471.60012
-[4] « Banach space operators with a bounded functional calculus », J. Aust. Math. Soc. (Ser. A) 60 (1996), p. 51-89. | MR 1364554 | Zbl 0853.47010
, , & -[5] -boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs Amer. Math. Soc., vol. 788, 2003. | Zbl 1274.35002
, & -[6] Linear Operators III - Spectral Operators, John Wiley & Sons Inc., 1972. | MR 1009164 | Zbl 0283.47002
& -[7] One-Parameter Semigroups for Linear Evolution Equations, Springer, 1999. | MR 1721989 | Zbl 0952.47036
& -[8] « -Kalkül und Dilatationen », Thèse, University of Karlsruhe, 2003, http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2003/ mathematik/8.
-[9] « Functional calculi for linear operators in vector-valued -spaces via the transference principle », Adv. Differ. Equ. 3 (1998), p. 847-872. | MR 1659281 | Zbl 0956.47008
& -[10] « A remark on sectorial operators with an -calculus, Trends in Banach spaces and operator theory », Contemp. Math. 321 (2003), p. 91-99. | MR 1978810 | Zbl 1058.47011
-[11] « Perturbation and interpolation theorems for the calculus with applications to differential operators », submitted. | Zbl 1111.47020
, & -[12] « Euclidean structures and their applications to spectral theory », in preparation.
& -[13] -, « The -functional calculus and square function estimates », in preparation.
[14] -, « The -calculus and sums of closed operators », Math. Ann. 321 (2001), p. 319-345. | MR 1866491 | Zbl 0992.47005
[15] « Maximal regularity for parabolic equations, Fourier multiplier theorems, and functional calculus », in preparation. | Zbl 1097.47041
& -[16] « A generalized functional calculus for operators on subspaces of and application to maximal regularity », Ill. J. Math. 42 (1998), p. 470-480. | MR 1631256 | Zbl 0906.47015
& -[17] « -functional calculus and applications to maximal regularity », Publ. Math. UFR Sci. Tech. Besançon 16 (1998), p. 41-77. | MR 1768324 | Zbl 0949.47012
-[18] -, « The similarity problem for bounded analytic semigroups on Hilbert space », Semigroup Forum 56 (1998), p. 205-224. | MR 1490293 | Zbl 0998.47028
[19] « Operators which have an functional calculus », Proc. Cent. Math. Anal. Aust. Natl. Univ. 14 (1986), p. 210-231. | MR 912940 | Zbl 0634.47016
-[20] The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., vol. 94, Cambridge University Press, 1989. | MR 1036275 | Zbl 0698.46008
-[21] The Adjoint of a Semigroup of Linear Operators, Springer Lecture Notes in Math., vol. 1529, 1993. | MR 1222650 | Zbl 0780.47026
-[22] « The holomorphic functional calculus for sectorial operators », submitted.
-