Nous étudions pour quelles métriques (proches de la métrique standard ) les solutions du d’Alembertien pour se comportent comme des solutions libres de l’équation des ondes standard. Nous proposons des conditions de décroissance assez faibles (i.e., non intégrables) sur ; en particulier, décroît comme le long des cônes d’onde.
We investigate for which metric (close to the standard metric ) the solutions of the corresponding d’Alembertian behave like free solutions of the standard wave equation. We give rather weak (i.e., non integrable) decay conditions on ; in particular, decays like along wave cones.
@article{BSMF_2005__133_3_419_0, author = {Alinhac, Serge}, title = {Free decay of solutions to wave equations on a curved background}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {133}, year = {2005}, pages = {419-458}, doi = {10.24033/bsmf.2493}, mrnumber = {2169825}, zbl = {1096.35013}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2005__133_3_419_0} }
Alinhac, Serge. Free decay of solutions to wave equations on a curved background. Bulletin de la Société Mathématique de France, Tome 133 (2005) pp. 419-458. doi : 10.24033/bsmf.2493. http://gdmltest.u-ga.fr/item/BSMF_2005__133_3_419_0/
[1] « An example of blowup at infinity for a quasilinear wave equation », Autour de l'analyse microlocale (G. Lebeau, éd.), vol. 284, Société Mathématique de France, 2003, p. 1-91. | MR 2003417 | Zbl 1053.35097
-[2] -, « Remarks on energy inequalities for wave and Maxwell equations on a curved background », 329 (2004), p. 707-722. | MR 2076683 | Zbl 1065.35075
[3] « Asymptotic properties of linear field equations in Minkowski space », Comm. Pure Appl. Math. XLIII (1990), p. 137-199. | MR 1038141 | Zbl 0715.35076
& -[4] -, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. | MR 1316662 | Zbl 0827.53055
[5] Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications, vol. 26, Springer Verlag, 1997. | MR 1466700 | Zbl 0881.35001
-[6] « Almost global existence for some semilinear wave equations », J. Anal. Math. LXXXVII (2002), p. 265-280. | MR 1945285 | Zbl 1031.35107
, & -[7] « A commuting vectorfields approach to strichartz type inequalities and applications to quasilinear wave equations », Int. Math. Res. Notices 5 (2001), p. 221-274. | MR 1820023 | Zbl 0993.35022
-[8] The evolution problem in general relativity, Progress in Math. Physics, vol. 25, Birkhäuser, 2003. | MR 1946854 | Zbl 1010.83004
& -[9] « Improved local well posedness for quasilinear wave equations in dimension three », 117 (2003), no. 1, p. 1-124. | MR 1962783 | Zbl 1031.35091
& -[10] « On almost global existence for nonrelativistic wave equations in 3D », Comm. Pure Appl. Math. XLIX (1996), p. 307-321. | MR 1374174 | Zbl 0867.35064
& -