Soient un groupe algébrique réductif connexe défini sur et l’endomorphisme de Frobenius correspondant. Soit un automorphisme rationnel quasi-central de . Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe , lorsque est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux éléments réguliers.
Let be a connected reductive group defined over and let be the corresponding Frobenius endomorphism. Let be a quasi-central automorphism of , which means that is quasi-semi-simple (i.e. stabilises where is a maximal torus included in a Borel subgroup of ) and for any quasi-semi-simple automorphism , where is the conjugation by for all . We suppose also that is rational. We define in this article Gelfand-Graev representations for the group when is unipotent and when it is semi-simple, which extend the -stable Gelfand-Graev representations for connected reductive groups. Let be a -stable rational maximal torus of included in a -stable rational Borel subgroup of . Let be the unipotent radical of . In the connected reductive case, Gelfand-Graev representations of are obtained by inducing an irreducible linear character of which is called a regular character. We define a regular character of as the extension of a -stable regular character of . When is unipotent, -stable Gelfand-Graev representations of are obtained by inducing -stable regular characters of . In this case, we define Gelfand-Graev representations of as the representations obtained by inducing regular characters of . When is semi-simple, the definition of Gelfand-Graev representations is more complicated. Gelfand-Graev representations of have similar properties to Gelfand-Graev representations of . They are multiplicity free and their Harish-Chandra restrictions to a rational -stable Levi subgroup included in a rational -stable parabolic subgroup still are Gelfand-Graev representations. We say that an element of is regular if the dimension of its centralizer in is minimal among all elements of . The dual of any Gelfand-Graev representation of is zero outside regular unipotent elements of when is unipotent (resp. outside regular pseudo-unipotent elements of , i.e. conjugates under of regular elements of , when is semi-simple). Moreover, Gelfand-Graev representations can be used to calculate the average value of irreducible characters of on the set of -classes of regular unipotent (resp. pseudo-unipotent) elements of if is unipotent (resp. semi-simple). When is semi-simple, the characteristic can be chosen good for and we can get the exact values of irreducible characters of on -classes of regular pseudo-unipotent elements of .
@article{BSMF_2004__132_2_157_0, author = {Sorlin, Karine}, title = {\'El\'ements r\'eguliers et repr\'esentations de~Gelfand-Graev des~groupes r\'eductifs non connexes}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {132}, year = {2004}, pages = {157-199}, doi = {10.24033/bsmf.2463}, mrnumber = {2075565}, zbl = {1059.20017}, language = {fr}, url = {http://dml.mathdoc.fr/item/BSMF_2004__132_2_157_0} }
Sorlin, Karine. Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes. Bulletin de la Société Mathématique de France, Tome 132 (2004) pp. 157-199. doi : 10.24033/bsmf.2463. http://gdmltest.u-ga.fr/item/BSMF_2004__132_2_157_0/
[1] Finite groups of Lie type, Wiley-Interscience, 1985. | MR 794307 | Zbl 0567.20023
-[2] « The characters of the group of rational points of a reductive group with non-connected centre », J. reine angew. Math. 425 (1992), p. 155-192. | MR 1151318 | Zbl 0739.20018
, & -[3] Representations of Finite Groups of Lie Type, London Math. Soc. Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. | MR 1118841 | Zbl 0815.20014
& -[4] -, « Groupes réductifs non connexes », Ann. Sci. École Normale Sup. 27 (1994), p. 345-406. | Numdam | MR 1272294 | Zbl 0846.20040
[5] -, « Points fixes des automorphismes quasi-semi-simples », C.R. Acad. Sci. Paris, Sér. I 334 (2002), p. 1055-1060. | MR 1911646 | Zbl 1001.20043
[6] « Generalized Deligne-Lusztig characters », J. Alg. 159 (1993), no. 1, p. 64-97. | MR 1231204 | Zbl 0812.20024
-[7] Classes unipotentes et sous-groupes de Borel, Lectures Notes in Math., vol. 946, Springer, 1982. | MR 672610 | Zbl 0486.20025
-[8] Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., vol. 80, American Mathematical Society, Providence, RI, 1968. | MR 230728 | Zbl 0164.02902
-