Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes
Sorlin, Karine
Bulletin de la Société Mathématique de France, Tome 132 (2004), p. 157-199 / Harvested from Numdam

Soient G un groupe algébrique réductif connexe défini sur 𝔽 q et F l’endomorphisme de Frobenius correspondant. Soit σ un automorphisme rationnel quasi-central de G. Nous construisons ci-dessous l’équivalent des représentations de Gelfand-Graev du groupe G ˜ F =G F ·σ, lorsque σ est unipotent et lorsqu’il est semi-simple. Nous montrons de plus que ces représentations vérifient des propriétés semblables à celles vérifiées par les représentations de Gelfand-Graev dans le cas connexe en particulier par rapport aux éléments réguliers.

Let G be a connected reductive group defined over 𝔽 q and let F be the corresponding Frobenius endomorphism. Let σ be a quasi-central automorphism of G, which means that σ is quasi-semi-simple (i.e. σ stabilises (TB) where T is a maximal torus included in a Borel subgroup B of G) and dim(G σ )>dim(G σ ' ) for any quasi-semi-simple automorphism σ ' =σ ad (g), where ad (g) is the conjugation by g for all gG. We suppose also that σ is rational. We define in this article Gelfand-Graev representations for the group G ˜ F =G F ·σ when σ is unipotent and when it is semi-simple, which extend the σ-stable Gelfand-Graev representations for connected reductive groups. Let T be a σ-stable rational maximal torus of G included in a σ-stable rational Borel subgroup of G. Let U be the unipotent radical of B. In the connected reductive case, Gelfand-Graev representations of G F are obtained by inducing an irreducible linear character of U F which is called a regular character. We define a regular character of U F ·σ as the extension of a σ-stable regular character of U F . When σ is unipotent, σ-stable Gelfand-Graev representations of G F are obtained by inducing σ-stable regular characters of U F . In this case, we define Gelfand-Graev representations of G F ·σ as the representations obtained by inducing regular characters of U F ·σ. When σ is semi-simple, the definition of Gelfand-Graev representations is more complicated. Gelfand-Graev representations of G F ·σ have similar properties to Gelfand-Graev representations of G F . They are multiplicity free and their Harish-Chandra restrictions to a rational σ-stable Levi subgroup included in a rational σ-stable parabolic subgroup still are Gelfand-Graev representations. We say that an element of G·σ is regular if the dimension of its centralizer in G is minimal among all elements of G·σ. The dual of any Gelfand-Graev representation of G F ·σ is zero outside regular unipotent elements of G F ·σ when σ is unipotent (resp. outside regular pseudo-unipotent elements of G F ·σ, i.e. conjugates under G of regular elements of U·σ, when σ is semi-simple). Moreover, Gelfand-Graev representations can be used to calculate the average value of irreducible characters of G F ·σ on the set of G F -classes of regular unipotent (resp. pseudo-unipotent) elements of G F ·σ if σ is unipotent (resp. semi-simple). When σ is semi-simple, the characteristic can be chosen good for (G σ ) 0 and we can get the exact values of irreducible characters of G F ·σ on G F -classes of regular pseudo-unipotent elements of G F ·σ.

Publié le : 2004-01-01
DOI : https://doi.org/10.24033/bsmf.2463
Classification:  20C33,  20G05
Mots clés: groupes réductifs finis, groupes algébriques non connexes
@article{BSMF_2004__132_2_157_0,
     author = {Sorlin, Karine},
     title = {\'El\'ements r\'eguliers et repr\'esentations de~Gelfand-Graev des~groupes r\'eductifs non connexes},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     volume = {132},
     year = {2004},
     pages = {157-199},
     doi = {10.24033/bsmf.2463},
     mrnumber = {2075565},
     zbl = {1059.20017},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/BSMF_2004__132_2_157_0}
}
Sorlin, Karine. Éléments réguliers et représentations de Gelfand-Graev des groupes réductifs non connexes. Bulletin de la Société Mathématique de France, Tome 132 (2004) pp. 157-199. doi : 10.24033/bsmf.2463. http://gdmltest.u-ga.fr/item/BSMF_2004__132_2_157_0/

[1] R. Carter - Finite groups of Lie type, Wiley-Interscience, 1985. | MR 794307 | Zbl 0567.20023

[2] F. Digne, G. Lehrer & J. Michel - « The characters of the group of rational points of a reductive group with non-connected centre », J. reine angew. Math. 425 (1992), p. 155-192. | MR 1151318 | Zbl 0739.20018

[3] F. Digne & J. Michel - Representations of Finite Groups of Lie Type, London Math. Soc. Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. | MR 1118841 | Zbl 0815.20014

[4] -, « Groupes réductifs non connexes », Ann. Sci. École Normale Sup. 27 (1994), p. 345-406. | Numdam | MR 1272294 | Zbl 0846.20040

[5] -, « Points fixes des automorphismes quasi-semi-simples », C.R. Acad. Sci. Paris, Sér. I 334 (2002), p. 1055-1060. | MR 1911646 | Zbl 1001.20043

[6] G. Malle - « Generalized Deligne-Lusztig characters », J. Alg. 159 (1993), no. 1, p. 64-97. | MR 1231204 | Zbl 0812.20024

[7] N. Spaltenstein - Classes unipotentes et sous-groupes de Borel, Lectures Notes in Math., vol. 946, Springer, 1982. | MR 672610 | Zbl 0486.20025

[8] R. Steinberg - Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., vol. 80, American Mathematical Society, Providence, RI, 1968. | MR 230728 | Zbl 0164.02902