Nous obtenons de nouveaux résultats sur les fonctions carrées associées à un opérateur sectoriel sur pour . Quand est en fait -sectoriel, on montre des équivalences de la forme pour des fonctions appropriées. On démontre également que possède un calcul fonctionnel borné par rapport à . Puis nous appliquons nos résultats à l’étude de conditions impliquant une inégalité du type , où engendre un semigroupe borné sur et est une application linéaire.
We give new results on square functions associated to a sectorial operator on for . Under the assumption that is actually -sectorial, we prove equivalences of the form for suitable functions . We also show that has a bounded functional calculus with respect to . Then we apply our results to the study of conditions under which we have an estimate , when generates a bounded semigroup on and is a linear mapping.
@article{BSMF_2004__132_1_137_0, author = {Le Merdy, Christian}, title = {On square functions associated to sectorial operators}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, volume = {132}, year = {2004}, pages = {137-156}, doi = {10.24033/bsmf.2462}, zbl = {1066.47013}, language = {en}, url = {http://dml.mathdoc.fr/item/BSMF_2004__132_1_137_0} }
Le Merdy, Christian. On square functions associated to sectorial operators. Bulletin de la Société Mathématique de France, Tome 132 (2004) pp. 137-156. doi : 10.24033/bsmf.2462. http://gdmltest.u-ga.fr/item/BSMF_2004__132_1_137_0/
[1] « The operator valued Marcinkiewicz multiplier theorem and maximal regularity », Math. Z. 240 (2002), p. 311-343. | MR 1900314 | Zbl 1018.47008
& -[2] P. Auscher, X. Duong & A. McIntosh - in preparation.
[3] « Holomorphic functional calculi of operators, quadratic estimates and interpolation », Indiana Univ. Math. J. 46 (1997), p. 375-403. | MR 1481596 | Zbl 0903.47011
, & -[4] « Schauder decompositions and multiplier theorems », Studia Math. 138 (2000), p. 135-163. | MR 1749077 | Zbl 0955.46004
, , & -[5] « An operator valued transference principle and maximal regularity on vector valued -spaces », Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (G. Lumer & L. Weis, éds.), Marcel Dekker, New-York, 2001, p. 67-87. | MR 1816437 | Zbl 0988.35100
& -[6] « Banach space operators with a bounded functional calculus », J. Austr. Math. Soc. 60 (1996), p. 51-89. | MR 1364554 | Zbl 0853.47010
, , & -[7] Bounded analytic functions, Pure and applied Mathematics, vol. 96, Academic Press, 1981. | MR 628971 | Zbl 0469.30024
-[8] « Admissible observation operators. Semigroup criteria of admissibility », Int. Equ. Oper. Theory 25 (1996), p. 182-198. | MR 1388679 | Zbl 0856.93021
& -[9] « The Weiss conjecture on admissibility of observation operators for contraction semigroups », Int. Equ. Oper. Theory 40 (2001), p. 231-243. | MR 1831828 | Zbl 1031.93107
& -[10] « Admissible and weakly admissible observation operators for the right shift semigroup », Proc. Edinburgh Math. Soc. 45 (2002), p. 353-362. | MR 1912645 | Zbl 1176.47065
, & -[11] « Weak admissibility does not imply admissibility for analytic semigroups », 2003. | MR 2020649 | Zbl 1157.93421
, & -[12] « Disproof of two conjectures of George Weiss », Preprint, 2000.
& -[13] « A solution to the problem of -maximal regularity », Math. Z. 235 (2000), p. 559-568. | MR 1800212 | Zbl 1010.47024
& -[14] « The calculus and sums of closed operators », Math. Ann. 321 (2001), p. 319-345. | MR 1866491 | Zbl 0992.47005
& -[15] « A joint functional calculus for sectorial operators with commuting resolvents », Proc. London Math. Soc. 77 (1998), p. 387-414. | MR 1635157 | Zbl 0904.47015
, & -[16] « The Weiss conjecture for bounded analytic semigroups », J. London Math. Soc. (2) 67 (2003), p. 715-738. | MR 1967702 | Zbl 1064.47045
-[17] Classical Banach spaces II, Springer Verlag, Berlin, 1979. | MR 540367 | Zbl 0403.46022
& -[18] « Operators which have an functional calculus », Miniconference on operator theory and partial differential equations, Proc. of CMA, Canberra, vol. 14, 1986, p. 210-231. | MR 912940 | Zbl 0634.47016
-[19] « Operators of type without a bounded functional calculus », Miniconference on operators in analysis, Proc. of CMA, Canberra, vol. 24, 1989, p. 159-172. | MR 1060121 | Zbl 0709.47016
& -[20] « Admissible observation operators for the right shift semigroup », Math. Cont. Signals Systems 13 (2000), p. 179-192. | MR 1784262 | Zbl 0966.93033
& -[21] « A new approach to maximal -regularity », Proc. of the Sixth International Conference on Evolution Equations and their Applications in Physical and Life Sciences (Bad Herrenalb, 1998) (G. Lumer & L. Weis, éds.), Lecture Notes in Pure and Appl. Math., vol. 215, Marcel Dekker, New-York, 2001, p. 195-214. | MR 1818002 | Zbl 0957.00037
-[22] -, « Operator valued Fourier multiplier theorems and maximal regularity », Math. Ann. 319 (2001), p. 735-758. | MR 1825406 | Zbl 0989.47025
[23] « Admissibility of unbounded control operators », SIAM J. Control Optim. 27 (1989), p. 527-545. | MR 993285 | Zbl 0685.93043
-[24] -, « Admissible observation operators for linear semigroups », Israel J. Math. 65 (1989), p. 17-43. | MR 994732
[25] -, « Two conjectures on the admissibility of control operators », Estimation and control of distributed parameter systems, Birkäuser Verlag, 1991, p. 367-378. | MR 1155659 | Zbl 0763.93041